دانلود انواع فایل

مقاله تحقیق پروژه دانش آموزی و دانشجویی

دانلود انواع فایل

مقاله تحقیق پروژه دانش آموزی و دانشجویی

ایمنی در برق

ایمنی در برق

فهرست مطالب:

مقدمه.

. تأ ثیر فرکا نس در برق گرفتگی1

. تأ ثیر برق گرفتگی بر روی قلب از نظر فیزیولوژی2

. اتصال زمین و مقاومت آن3

. انواع الکترود های زمین 4

. روش های حفا ظت در مقا بل برق گرفتگی 5

. رفع خطر برق گرفتگی 6

.تدابیر ایمنی هنگام کار با برق فشار ضعیف و قوی 7

8.تدابیر ایمنی هنگام کار با جر ثقیل ها ، برجهای با لا بر و نردبان های سیّار

.تدابیر ایمنی کار با دستگاه های برقی در بلندی 9

.حریق های الکتریکی10

.کمک های اولیه در مقابل برق گرفتگی 11

.زمین کردن و صفر کردن در تأ سیسات الکتریکی 12

. ایمنی در صنعت13

.ایمنی در صنعت ساخت و ساز 14

. اصول حفاظت از صاعقه 15

. برق گیر یا رسانای آذرخش 16

. انواع برقگیر ها17

.تست برقگیرها 18

19.آتش سنت المو

.نکات مهم در مورد برقگیرها 20

.بر ق گیر در خطوط انتقال 21

22.ایمنی در برق – قسمت دوم : عایق بندی قسمتهای برق دار ، ایجاد حسار و مانع

.کار بردهای ایمنی در سوییچ گیر های برق 23

.برخی احتیاطات در رابطه با برق و ایمنی در منزل24

.ایمنی در مورد لوازم اندازه گیری ( کنتور)25

.کمکهای اولیه 26

. رعایت نکات ایمنی در زمینه ی برق27

.سیستم ارت وسایل برقی28

.دستور العمل ایمنی کار با تأسیسات برقی 29

. ایمنی وسایل قطع کننده جریان 30

GFCI . دستگاه 31

GFCI . کاربرد 32

مقدمه:

ایمنی در برق

تعریف ایمنی:مجموعه کارهایی را که یک فرد یا یک گروه اجرایی درارتباط با شبکه ها و دیگرتأ سیسات توزیع نیرو انجام میدهد و از حوادث برای افراد و تأسیسات جلوگیری نما ید و حد ا کثر راندمان را در پی داشته باشد ایمنی در برق گویند.

برای جلو گیری از حوادث افراد باید به نکات زیرتوجه کنند:

1 . توجه دقیق به اجرای آموخته های مر بوط به اصول و مقررات ایمنی در واحد های اجرایی و احیای فرهنگ ایمنی در بین کار گران

2 . توجه به ضرورت اطاعت محض از کلیه مقررات ایمنی

3 . توجه به لزوم استفاده از وسایل ایمنی سالم و کامل به طور مستمر

شوک الکتریکی:

زمانی اتفاق می افتد که قسمتی از بدن شخص بخشی از مدارهای الکتریکی شود و از آن جریان برق کافی عبور کند.

عبور جریان الکتریکی از بدن انسان بستگی به وضعیت فیزیکی آن دارد. ممکن است شوک الکتریکی به سوختن بدن منجر شود و این در شرایطی است که فرکانس الکتریکی زیاد باشد. که متأسفانه فرکانس 50 حد اکثر تأثیرات فیزیکی را در شخص ایجاد می کند.

word: نوع فایل

سایز:82.7 KB

تعداد صفحه:100



خرید فایل


ادامه مطلب ...

ایمنی برق

ایمنی برق

در صنعت برق اگر ایمنی رعایت نشود ، خطر برق گرفتگی حتمی است. بنابراین قبل از دست زدن به سیم یا ادوات برقی جهت تعمیر و یا هر گونه بازرسی بایستی حتماً جریان برق در مدار قطع بوده و مطمئن باشید که جریان برق وجود ندارد و آزمایش وجود یا عدم وجود جریان برق توسط فازمتر صورت میگیرد.

مقاومت الکتریکی :

مقاومت در برابر جریان الکتریسیته را مقاومت الکتریکی گویند و واحد اندازه گیری آن اهم می‌باشد.جدول زیر مقاومت بدن انسان را در مقابل جریان الکتریسیته نشان می‌دهد.

مقاومت بر حسب اهم اجزای بدن

100000 تا 600000 پوست خشک

1000 پوست خیس

400 تا 600 دست و یا اندام داخلی

100 گوش تا گوش

سیستم ارت وسایل برقی :

ازآنجائی که مقاومت سیم در برابر جریان برق از مقاومت بدن انسان کمتر است چنانچه دستگاه برقی ما بوسیله یک سیم به زمین وصل شود ، جریان برق از طریق این سیم به زمین منتقل خواهد شد.دستگاههای برقی سیار بوسیله سیمی که در دو شاخه آن تعبیه شده به پریز مخصوص متصل می گردد. برای دستگاهها و سازههای بزرگ باید تمامی کابلها به یک نقطه به نام چاه ارت EARTH PEAT متصل گردند.

پاره‌ای از اصول اولیه ایمنی برق :

1. قبل از شروع تعمیر وسایل برقی حتماً مجوز لازم را اخذ نمائید.

2. قبل از شروع به کار (تعمیر) کلید اصلی برق شبکه را قطع نموده و درب جعبه تقسیم را قفل نمائید.

3. چنانچه امکان قفل کردن جعبه وجود نداشته باشد، با در آوردن فیوز جریان را قطع نمائید.

4. در صورت امکان برچسب تعمیرات نیز زده شود.

5. فقط برقکاران اجازه کار بر روی شبکه یا دستگاه ها را دارند.

6. تمامی دستگاههای برقی باید دارای سیم ارت باشند.

7. تمامی کابلهای معیوب باید تعویض شوند.

8. از هر کابل فقط یک انشعاب گرفته شود.

9. تمامی دستگاهها باید دو شاخه داشته باشند.

10. برای تعمیر یک وسیله برقی حتماً باید دو شاخه آنرا در آورید.

11. در کارهای برقی هیچگاه شانسی عمل نکنید.

12. هیچگاه دو شاخه را با کشیدن کابل از پریز جدا نکنید.

تجهیزات ایمنی‌ سازی محیط برداشته شود .

اقداماتی که برای نجات شخص برق گرفته می توان انجام داد عبارتست از :

1- قطع مدار برق

2- رها کردن شخص برق گرفته از مدار

3- تنفس مصنوعی

word: نوع فایل

سایز:17.6 KB

تعداد صفحه:24



خرید فایل


ادامه مطلب ...

کاربرد نانومواد درصنعت برق

کاربرد نانومواد درصنعت برق

کاربرد نانومواد درصنعت برق........................................................۱

‌پیشرفتهای حاصله در زمینه نانوتکنولوژی(متالوژی)...........................۲

‌پیشرفتهای حاصله دربهبود خواص مواد یا نانو ساختارسازی................٣

ریز ساختار نانومواد.....................................................................۴

تاثیر نانوساختارسازی بربهبودخواص پوشش ها..............................۱۰

نتیجه گیری..............................................................................۱٤

انجام تغییرات اصلاحی. بازده توربین بخار را افزایش می دهد..............۱٥

گزینه های اصلاحات...................................................................۱٦

اصلاحاتی در زمینه سیلینگ(آب بندی)...........................................۱٨

کراکینگ دیسک..........................................................................۱٩

بهسازی…………...…………………………………PECO٢٠

تغییر اصلاحی بر روی توربین های HP و LP................................۲٢

آرایش های مختلف توربین های بخار.............................................۲٤

منابع......................................................................................٢٦



خرید فایل


ادامه مطلب ...

تحقیق درباره شغل مهندس برق

تحقیق درباره شغل مهندس برق


فهرست مطالب

وظایف مهندس برق.. 7

مهارت و توانمندی های مورد نیاز مهندسی برق.. 8

تحصیلات لازم برای ورود به شغل مهندسی برق.. 11

آینده شغلی، بازار کار و فرصت های استخدامی مهندس برق.. 11

درآمد و حقوق مهندس برق.. 13

شخصیت های مناسب شغل مهندسی برق.. 14



خرید فایل


ادامه مطلب ...

کارآموزی رشته برق

کارآموزی رشته برق


باردهی ترانسفورماتور

ابتدا باید گفته شود که که مطلوب ترین شرایط برای کار یک ترانس این است که با تمام ظرفیت تحت سرویس بوده و ایزولاسیون آن نیز نباید از حد مجاز تجاوز ننمایند.

اضافه بار مجاز

عملا منحنی مصرف بار الکتریکی که در طول شبانه روز غیر یکنواخت بوده و در فاصله زمانی مشخصی مقدار ماکزیمم خود را خواهد داشت .

از طرف دیگر با توجه به این حقیقت که عمر مفید هر نوع از عایق های الکتریکی پس از جذب میزان معینی حرارت به اتمام می رسد , می توان در ماقع پیک بار , ترانس را به صورتی تحت اضافه بار قرار داد که اضافه فساد عایق در این پریود درست به اندازه کمبود فساد آن در زمان مینیمم بار باشد .

به این ترتیب عایق عمر مفید معین شده خویش را حفظ نموده و دچار خرابی زودرس نخواهد گردید . این اضافه بار که معمولا به صورت درصدی از بار نامی بیان می شود , بستگی به میزان غیر یکنواختی منحنی بار , روش خنک کردن ترانس و ضریب انتقال حرارت آن دارد . اضافه بار مجاز برای زمان های کوتاه برای ترانس به شرح زیر می باشد .

1) ترانسهای روغنی

30

45

60

75

100

اضافه بار مجاز (درصد)

120

80

45

20

10

زمان اضافه بار (دقیقه)

2) ترانسهای خشک

20

30

40

50

60

اضافه بار مجاز (درصد)

60

45

32

18

5

زمان اضافه بار (دقیقه)

در شرایط اضطراری ممکن است ترانسها را حتی روزانه 6 ساعت و حداکثر تا 5 روز متوالی تحت 40 درصد 40 درصد اضافه بار قرار داد. البته در این صورت بار میانگین ترانس در طول 24 ساعت نباید از 93/0 بارنامی تجاوز نماید.

شرایط پار الل کردن و باردهی اقتصادی برای ترانسفورماتورها

وقتی که ترمینالهای مشابه اولیه و ثانویه دوترانس (یا بیشتر ) به یکدیگر متصل شوند گفته می شود که آنها بصورت پارالل کارمی کنند.

این عمل معمولاً ا زطریق باسهای ویژه و یا مستقیماً روی شبکه انجام می گیرد. برای پارالل کردن چند ترانس شرایط زیر باید برقرار باشد.

1) ترانس های روغنی

2) ترانس های خشک

در شرایط اضطراری ممکن است ترانس ها را حتی روزانه 6 ساعت و حداکثر تا 5 روز متوالی تحت 40 درصد اضافه بار قرار دارد . البته در این صورت بار میانگین ترانس در طول 24 ساعت نباید از 93/0 بار نامی تجاوز نماید .

شرایط پارالل کردن و باردهی اقتصادی برای ترانسفورماتورها

وقتی که ترمینال های مشابه اولیه و ثانویه دو ترانس (یا بیشتر) به یک دیگر متصل شوند گفته می شود که آن ها به صورت پارالل کار می کنند .

این عمل معمولا از طریق باس های ویژه و یا مستقیما روی شبکه انجام می گیرد .برای پارالل کردن چند ترانس باید برقرار باشد :

1) کلیه ترانس ها باید دارای گروه های اتصال یکسان باشند.

2) ولتاژ نامی ونسبت تبدیل ترانس ها باید یکسان باشد .

3) ولتاژ اتصال کوتاه (امپدانس اتصال کوتاه ) ترانسفورماتورها باید برابر باشند .

اگر در یک پست برق چند ترانسفورماتور به طور پارالل وجود داشته باشد , شرایط کار اقتصادی ایجاد می نماید که بر حسب مقدار بار مصرفی , تعداد مشخصی از ترانسفورماتورها در مدار قرار گیرند .

این تعداد بر این اساس انتخاب می شوند که تلفات انرژی به حداقل ممکن برسد و البته مناسب ترین وضعیت حالتی است که در این انتخاب علاوه بر تلفات در خود ترانسفورماتورها تلفات بار اکتیو و راکتیو در شبکه نیز مد نظر قرار گیرد .

ارقام 0 تا 11 مبین گروه اتصال بوده و مشخص می کند که بردار ولتاژ یک فاز (در اتصال ستاره ) در فشار قوی چند برابر 30 درجه نسبت به ولتاژ همان فاز (دراتصال ستاره) در طرف فشار ضعیف و در جهت مثبت متلتاتی اختلاف فاز دارد .

اتصال ترانسفورماتورها با گروه های اتصال غیر مشابه به همدیگر به هیچ وجه امکان پذیر نمی باشد . برای درک حادثه های که ممکن است در اثر اتصال چنین ترانسفورماتورهایی پیش آید کافی است متذکر شود که اگر بردارهای ثانویه دو ترانس فقط 30 درجه اختلاف فاز داشته باشند , جریان متعادل کننده از 3 تا 5 برابر جریان نامی تجاوز خواهد نمود .

همچنین اختلاف کوچکی در نسبت تبدیل دو ترانس پارالل شونده , منجر به جریان متعادل کننده نسبتا زیادی شده و ترانسفورماتوری که دارای ولتاژ ثانویه بیشتر است بار زیادتری به خود جذب می نماید .اگر چند ترانس با امپدانس اتصال کوتاه هایی مختلف به صورت پارالل بسته شوند توزیع بار بین آن ها به طور مستقیم با ظرفیت نامی و به طور معکوس متناسب با امپدانس اتصال کوتاه خواهد بود .

نسبت بین ظرفیت نامی ترانس هایی که قرار است به طور پارالل کار کنند نباید از 3:1 تجاوز نماید , زیرا اگر چه امپدانس اتصال کوتاه دو ترانس تیز مساوی باشند , مولفه های اکتیو و راکتیو آندو معمولا با هم اخلتاف داشته و این اختلاف در ترانسفورماتورهای با ظرفیت پایین بارزتر می باشد .

حال چنانچه امپدانس های اتصال کوتاه نیز بیش از 10 درصد تفاوت داشته باشد , اختلاف بین مولفه های فوق شدید تر بوده و نتیجتا کار پارالل کردن آن ها به خاطر وجود جریان متعادل کننده با اشکال مواجه خواهد شد .پس از اتمام عملیات نصب و یا تعمیرات اساسی معمولا ترانسفورماتورها مورد تست های مخصوص قرار داده و بعد از اطمینان از حصول شرایط کار پارالل تحت سرویس قرارمی دهند .

تنظیم ولتاژ

تنظیم ولتاژ در شبکه برق به کمک تپ چنجر و یا با کم یا زیاد کردن تعداد دورهای سیم پیچ ترانسفورماتور صورت می گیرد . اغلب ترانسفورماتورهای اصلی شبکه برق مجهز به تپ چنجر چنجر هایی هستند که زیر بار کار کرده و در طرف فشار قوی ترانس نصب می شوند . این تپ چنجرها در واقع وقتی که ولتاژ فشار قوی از حد مجاز انحراف پیدا کند , با تغییر دادن نسبت ولتاژ طرف فشار ضعیف را در مقدار نامی تثبیت می نمایند . از نطر نوع تپ چنجرها را به دو دسته می توان تقسیم نمود . در نوع اول نسبت تبدیل ترانسفورماتور در حالت قطع کامل از شبکه و به کمک چند حلقه سیم پیچ اضافی تغییر داده شده ودر نوع دوم تغییر نسبت تبدیل در حالت اتصال کامل به شبکه و زیر بار انجام می گیرد .

مثلا در ترانسفورماتورهای کاهنده توزیع برق , چهار تپ وجود دارد که به کمک آن ها می توان نسبت تبدیل ترانسفورماتور را در حالت بی باری و به میزان 5+ , 5/2 + , 5/2 _ , و 5_ درصد مقدار نامی تغییر داد .

تپ چنجر ها معمولا در مخزن جداگانه ای در مجاورت تانک ترانس (به طوری که از بیرون به صورت یکپارچه دیده می شوند) نصب شده و محور عمل کننده آن ها در بالای ترانس قرار دارد . طبیعی است که در لحظات تغییر یک تپ به تپ دیگر مدار ترانسفورماتور قطع خواهد شد . برای تثبیت ولتاژ وقتی که ولتاژ در ترمینال های طرف فشار ضعیف افزایش می یابد , باید تعداد دور سیم پیچ فشار قوی را به میزان مناسب کاهش داده و برعکس اگر ولتاژ در طرف فشار ضعیف کاهش یابد باید تعداد دور در طرف فشار قوی را به میزان مناسب افزایش داد .

بیشترین حوادثی که برای یک ترانس پیش می آید ناشی از عیوبی است که در سیتم تپ چنجر آن بروز می نماید . این عیوب عمدتا عبارتند از :

گرم کردن و سوختن کنتاکت ها , جام کردن محور تپ چنجر , شل و لق شدن اتصالات مکانیکی و ضعیف شدن کنتاکت های الکتریکی .

به همین جهت مکانیزم تپ چنجر باید به طور مرتب و دوره ای تحت مراقبت و بازرسی قرار گیرد . در تپ چنجرهای زیر بار معمولا با استفاده از یک زیر بار معمولا با استفاده از یک تپ کمکی مانع قطع مدار جریان در پریود تعویض تپ می شوند که این عمل که به کمک سوئیچ مخصوصی در داخل مخزن مخصوص تپ چنجر صورت می گیرد .

مکانیزم تپ چنجر زیر بار ممکن است از طریق تابلوی کنترل مربوطه فرمان داده شده ویا بطور اتوماتیک وتحت کنترل رله های ولتاژی عمل نماید .

مشخصات فنی و ویژگی های ترانسفورماتورهایی که عمومادر شبکه های توزیع و انتقال برق به کار برده می شوند در استانداردهای معتبر بین المللی بیان شده است .

تپ چنجرهای زیر بار در بعضی از ترانس ها مجهز به سیستمهای کنترل اتوماتیک بوده و ولتاژ شبکه را بر حسب تغییرات بار تا 15=درصد تنظیم می نماید .

اکر سیستم کنترل اتوماتیک یک تپ چنجر معیوب شود باید ترانس را کلا از مدارخارج کرده و تحت تعمیر قرار داد.

تپ چنجر زی بار باید اصولا دارای فرمان از راه دور بوده و هیچگونه تغییر تپ دستی برای ترانسفورماتورهای مجهز به سیستم تپ چنجر زیر بار مجاز دانسته نشده است.

امروزه رگولاتورهای ولتاژ کریستالی به جای رگولا تورهای الکترومکانیکی کاربرد وسیعی جهت تنظیم ولتاژ در شبکه ها ی برق پیدا کرده اند.

این رگولاتورهاکه مستقما به تپ چنجر فرمان می دهند معمولا دارای سیستم حفاظت و سینگال ویژه ای بوده و در صورت لزوم می توان مجموعه رگولاتور را از مدار خارج نمود .

ضمنا تنظیم نقطه کار این رگولاتورها نیز از راه دور مسیر می باشد .تپ چنجرهاغالبا مجهز به کنتورشمارنده هستند که تعداد دفعات عملکرد ان رانشان می دهدو طبق دستور العمل کارخانه برحسب مورد پس ازهر

10000تا20000کلید زنی ,کنتاکتهای تپ چنجر باید بازرسی شده وعیوب احتمالی آن بر طرف گردد

برای انجام این عمل باید روغن مخزن تپ چنجر را تخیله نمود ,البته علاوه بر این تپ چنجر های زیر باید حداقل سال یک بار مورد بازرسی وتست قرار گرفته و قسمتهای گردنده ومحلهای که تحت اصطکاک قراردارند نیز هر شش ماه یکبار روغن کاری شوند.اگر چند ترانس که به صورت پارالل کار می کنند دارای رگولاتورهای اتوماتیک باشند , باید توجه نمود که عملکرد رگولاتورها باید کاملا همزمان ومشابه باشند واگر رگولاتور اتوماتیک وجود نداشته باشد ,برای به حداقل رساندن جریان متعادل کننده ,تغییر تپ باید قدم به قدم صورت گرفته واختلاف بیش از یک تپ بین دو ترانس ایجاد نگردد.

تنظیم ولتاژ ممکن است توسط اتوترانسفورماتورها و یا بوستر ترانسفورماتورها نیز صورت گیرد . بوستر ترانسفورماتور از یک و یا به ترانس سری و یک ترانس تغذیه کننده ان تشکیل می شود بطوریکه سیم پیچ ثانویه ترانس با سیم پیچ ترانسفورماتورهای که لازم است ولتاژ آن تنظیم شود بطور سری بسته شده و اولیه ان به ثانویه ترانس تغذیه کوپل می شود

مراقبت و نگهداری از ترانسهای قدرت

زمین زیر ترانس های روغنی باید به طرف چاهک مخصوص روغن شیببندی شده و روی ان رابا قلوه سنگ تمیز به ارتفاع حداقل 25سانتیمتر پر شود .چاهک روغن که لوله تخلیه نیز برای ان پیش بینی می شود معمولا در کنار دیوار ساخته شده وباید به طور مرتب توسط اپراتور بازدید شود .

باید مراقبت نمود که روغن قابل اشتغال در ترنچهای کابل و یا منولهای دیگر موجود در محوطه نفوذ ننموده وضمنا در اتاق ترانس باید شن خشک در جبعه های مخصوص و همچنین لوازم دیگر اطفا حریق وجود داشته باشد .

یک ترانس رابعد از اتمام عملیات نصب ,باید تحت تست ها و بررسیهای لازم قرارداده وپس از ان در سرویس گذاشت هدف از این تست ها عبارت از حصول اطمینان از عملکرد صحیح رله ها ومدارات حفاظتی اینتر لاکهای دژنکتورها ,چک کردن کلیه ترمومترها , چک کردن سطح روغن در کنسرواتور و اطمینان از بر قرار بودن ارتباط ان با تانک ترانس .

قبل از اتصال ازمایشی ترانس که در ان فقط دژنگتورهای طرف اولیه بسته می شود, اپراتور باید کلیه شیر های روغن رادیاتورها و کنسرواتور را بازدید کرده و از عدم وجود هوا در رله بوخهلتز اطمینان حا صل نماید .

همچنین قسمتهای مختلف ترانس وتجهیزات جانبی انرا که در فضای ازاد قرار دارند تا سر دژنکتورها باز بینی کرده ودقت نماید که روی ترانسفورماتور اشیا اضافی وجود نداشته باشد ,تانک ترانس به طور محکم وموثر به زمین وصل شده باشد ,روغنی از ترانس نشت ننماید واتصالات برقگیرهای حفاظتی که معمولا در جلوی ترانس وروی خط فشار قوی نصب میشوند برقرارباشد .

در این حالت پس از اطمینان از سلامت ودرمدار بودن سیستمهای حفاظتی می توان دژنگتورها راوصل نمود .البته در اینجا یاد آور می شود که وصل ترانس با تاخیری کمتر از 12ساعت پس از پر نمودن تانک از روغن مجاز دانسته نشده است .برای وصل ازمایشی ترانس باید مدارهای رله بوخهلتز و رله جریان زیادی برای قطع انی و بدون تاخیر اماده می شود ,ولی می توان ترانس را به سیستمهای خنک کننده نیز وصل نمود ,در این صورت باید توجه داشت که در جریان کار ,درجه حرارت روغن درقسمت بالای تانک از75 درجه سانتیگراد تجاوز ننماید (به علت گرمای ناشی ازتلفات اهن).

برای کنترل وضعیت ترانس در شرایط بی باری باید حداقل 30 دقیقه آن در حالت وصل آزمایشی نگاه داشت .اگر در خلال این مدت نتایج ازمایشات قانع کننده بود می توان بلا فاصله دژنگتورهای طرف ثانویه ترانس را زیر بار قرار داد.

درترانسفوماتورهایی که سطح روغن کنسراتور توسط لوله شیشه ای آب نما کنترل می شود باید دقت نمود که دو سر لوله مزبور مسدود نباشد زیرا در صورت مسدود بودن این لوله سطح روغن به صورت صحیح نمایش داده نمی شود .

در ذیل ترانسفورماتورهای تحت سرویس را بر حسب شرایط کاری مختلف طبقه بندی نموده ,نحوه رسیدگی و بازرسیهای روتین آنها به شرح زیر می باشد .

1)در نیروگاههاو پستهایی که توسط تشکلات پرسنلی شیفت یا مقیم محل کار کنترل ونگهداری می شوند , ترانسفرماتورهای اصلی و ترانسفورماتورهای مصرف داحلی (اعم از اصلی و رزرو) باید بطور روزانه وبقیه ترانسفورماتورها هفته ای یک مرتبه مورد بازرسی قرارگیرند.

2)در نیرگاهها و پستهایی که توسط اکیپهای سیار نگه داری می شوند ,ترانسفورماتورها باید حداقل ماهی یکبار مورد بازرسی قرار گیرند.

3)در پستهای کوچک وکم ظرفیت ترانسها حداقل هرشش ماه یکبار باید بررسی شوند .سیستمهای خنک کننده ترانسفورماتورها باید از نقطه نظر عملکردصحیح پمپها و فن ها کنترل شوند
برای انجام این عمل اپراتورباید دمای روغن ترانسفورماتور وهمچنین دمای روغن در ورودی وخروجی کولر (در صورتکه ترانس مجهز به کولر ابی جهت خنک کردن باشد )رایادداشت نماید.

هرگاه ترانسی توسط رله های حفاظت داخلی قطع شود (رله بوخهلتز ,رله دیفرانسیل ,رله جریان زیاد ) ابتدا اپراتور باید وضع ظاهری ان و تجهیزات جنبی مربوطه به جهت پی بردن به علت حادثه مورد بازرسی قراردهد.

مثلا اگر وجود گاز در رله بوخهلتز مشاهده شود ,نمونه ان باید جهت تست به آزمایشگاه ارسال گردد.

زیرا بعضی مواقع ممکن است در خلال کار ترانس حبابهای هوای درون روغن باعث عملکرد نابجای رله بوخلتز گردد.

اگر گاز درون رله بخهلتز از روغن سوخته متصاعد شده باشد مبین وجود حادثه در داخل ترانس بوده که در این صورت بلا فاصله باید ترتنس راجهت تعمیرات از مدار ایزوله نمود .تعمیرات دورهای روی ترانسهایی که قطع آنها مستلزم خارج شدن ترانس اصلی از مدار است هر دو سال یک مرتبه وبقیه ترانسهاهر چهار سال یک مرتبه صورت میگیرد .

ضمنا ترانسفورماتورهایی که در شرایط محیطی با آلودگی بسیار بالا کار می کنند باید طبق دستور العملهای ویژه مربوط به محل ,مورد تعمیرات دورهای قرارگیرند. خشک کردن ترانسفورماتورها اولا : اگر سیم پیچ یا ایزولاسیون ترانس به طور جزئی یا کلی تعمیر شده باشد , به نیاز به اندازه گیری به خصوصی قطعا باید آن را تحت عملیات رطوبت زدائی قرار داد .

فهرست مطالب

عنوان صفحه

مقدمه

باردهی ترانسفورماتور 1

شرایط پارالل کردن 2

تنظیم ولتاژ 5

مراقبت و نگهداری از ترانس های قدرت 9

دژنکتورها 14

اندازه گیری زمان قطع و وصل کلید 17

سکسیونرها 18

ترانسفورماتورهای ولتاژ 23

ترانسفورماتورهای جریان 25

راکتورها 29

فیوزها 31

برقگیرها 33

تست دوره ای تجهیزات 36

نیروگاهها و پست های برق 38

زمین حفاظتی در تجهیزات الکتریکی 44

بازرسی و تست شبکه اتصال زمین 50

کابلهای قدرت سه فاز 50

استفاده از فیلتر ترموسیفون در ترانسفورماتور 53



خرید فایل


ادامه مطلب ...

بررسی کاربرد ترانسفورماتورها در انتقال انرژی برق

بررسی کاربرد ترانسفورماتورها در انتقال انرژی برق


پیشگفتار :

پیدایش ترانسفورماتور در صنعت برق دو تحول عمده در این صنعت بوجود آورده است :

1- ارتباط سراسری میان شبکه های مصرف و تولید در سطح یک یا چند کشور

2- امکان طراحی وسایل الکتریکی با منابع تغذیه دلخواه.

گستردگی منابع انرژی در سطح هر کشور و مقرون به صرف بودن تاسیس نیروگاههای برق در نزدیکی منابع انرژی ، همچنین ضرورت تعیین محلی خاص برای احداث سدها سبب می شود که هنگام انتقال انرژی الکتریکی با ولتاژ پایین ، تلفات زیادی در انرژی تولید شده به وجود آید. بنابراین ، یا باید نیروگاههای برق ، محلی طراحی شوند یا به دلیل پایین بودن بازده اقتصادی از احداث آنها صرفنظر شود. بهره گیری از ترانسفورهای قدرت موجب افزایش ولتاژ جریان انتقال و کاهش تلفات انرژی به مقدار زیاد می شود، در نتیجه :

1- مشکل انتخاب محل نیروگاه را بر طرف می کند.

2- ایجاد شبکه سراسری را میسر می سازد.

3- مدیریت بر شبکه مصرف و تولید را به مراتب گسترش می دهد

از سوی دیگر کاهش ولتاژ جریان متناوب شبکه با استفاده از ترانسفورماتور امکان طراحی وسایل الکتریکی ، الکترونیکی ، صوتی ، تصویری و سیستم های کنترل را با هر ولتاژ لازم فراهم می آورد . همچنین به علت طراحی مدارهای فرمان الکتریکی با ولتاژ کمتر، ایمنی تکنیسینها و کارگران فنی مربوطه در هنگام کار افزایش می یابد.


اصول و طرز کار ترانسفورماتور

ترانسفورماتور دستگاه استاتیکی ( ساکن ) است که قدرت الکتریکی ثابتی را از یک مدار به مدار دیگر با همان فرکانس انتقال می دهد . ولتاژ در مدار دوم می تواند بیشتر یا کمتر از مدار اول بشود، در صورتیکه جریان مدار دوم کاهش یا افزایش می یابد.

بنابراین اصول فیزیکی ترانسفورماتورها بر مبنای القاء متقابل می باشد که بوسیله فوران مغناطیسی که خطوط قوای آن اولیه و ثانویه را قطع می کند، ایجاد می گردد.

ساده ترین فرم ترانسفورماتورها بصورت دو سیم القائی است که از نظر الکتریکی از یکدیگر جدا شده هستند ولی از نظر مدار مغناطیس دارای یک مسیر با مقاومت مغناطیس کم می باشد .

هر دو سیم پیچ اولیه و ثانویه دارای اثر القایی متقابل زیاد می باشند . بنابراین اگر یک سیم پیچ به منبع ولتاژ متناوب متصل شود، فلوی مغناطیسی متغیر بوجود خواهد آمد که بوسیله مدار مغناطیسی ( هسته ترانسفورماتور که از یکدیگر عایق شده اند ) مدارش بسته شده و در نیتجه بیشتر فلوی مغناطیسی مدار ثانویه را قطع نموده و تولید نیروی محرکه التریکی می نماید. ( طبق قانون فاراده نیروی محرکه القاء شده ) . اگر مدار ثانویه ترانسفورماتور بسته باشد یک جریان در آن برقرار می گردد و می توان گفت که انرژی الکتریکی سیم پیچ اولیه ( بوسیله واسطه مغناطیس ) تبدیل به انرژی الکتریکی در مدار ثانویه شده است .

تعریف مدار اولیه و ثانویه در ترانسفورماتور.

بطور کلی سیم پیچ که به منبع ولتاژ متناوب متصل می گردد را سیم پیچ اولیه یا اصطلاحاً «طرف اول » و سیم پیچی که این انرژی را به مصرف کننده منتقل می کند ، سیم پیچ ثانویه « طرف دوم » می نامند .

حال می توان بطور کلی مطالب فوق را بصورت زیر جمع بندی نمود:

بنا به تعریف ترانسفورماتور وسیله ایست که :

1- قدرت الکتریکی را از یک مدار به مدار دیگر انتقال می دهد. بدون آنکه بین دو مدار ارتباط الکتریکی وجود داشته باشد.

2- در فرکانس مدار هیچگونه تغییری ایجاد نمی نماید.

3- این تبدیل بوسیله القاء الکترومغناطیسی صورت می گیرد.

4- در صورتیکه مدار اولیه و مدار ثانویه بسته باشند ، این عمل بصورت القای متقابل و نفوذ در یکدیگر صورت می گیرد.

ساختمان ترانسفورماتور :

اجزای یک ترانسفورماتور ساده عبارتند از :

1- دو سیم پیچ که دارای مقاومت اهمی و سلفی می باشند.

2- یک هسته مغناطیسی .

3- قسمتهای دیگری که اصولاً مورد لزوم می باشند عبارتند از :

الف : یک جعبه برای قرار دادن سیم پیچ ها و هسته در داخل آن

ب : سیستم تهویه – که معمولاً در ترانسفورماتورهای با قدرت زیاد، علاوه بر سیستم تهویه می یابد مخزن روغن نیز برای خنک کردن بهتر کار گرفته شود.

ج : ترمینالهایی که باید سرهای اولیه و ثانویه روی آنها نصب شود.

خصوصیات هسته مغناطیسی :

در تمام انواع ترانسفورماتورها هسته از ورقه های ترانسفورماتور ( ورقه های دینامو ) ساخته می شود که مسیر عبور فوران مغاطیسی را با حداقل فاصله هوایی ایجاد نماید و جنس آن از آلیاژ فولاد می باشد که مقداری سیلیس به آن اضافه گردیده است.

با فعل و انفعالاتی که در متالوژی بر روی این نوع فولاد انجام می شود وعملیات حرارتی که صورت می گیرد سبب می شود که پر می ابلیته ( قابلیت هدایت مغناطیسی ) هسته بالا رفته و به عبارت دیگر تلفات هیستر زیس کاهش می یابد و بطور کلی مقاومت مغناطیسی کوچک می گردد.

از طرف دیگر برای کاهش تلفات ناشی از جریان گردابی فوکو هسته ترانسفورماتورها را به صورت ورقه می سازند و اصولاً یک طرف این ورقه ها را با ماده ای که بتواند فوران مغناطیسی را عبور دهد ولی عایق جریان الکتریکی باشد، می پوشانند و بنابراین این ورقه ها باید به ترتیبی چیده می شوند که از یکدیگر عایق الکتریکی باشند.

معمولاً ضخامت ورقه های هسته ترانسورماتورها در فرکانس 50 تا 25 بین 35/0 تا 50/0 میلیمتر می باشد.

این ورقه ها پهلوی هم قرار می گیرند. و اصولاً مقدار آن محاسبه می گردد. همانطوریکه در این شکل مشاهده می شود ، با قرار گرفتن ورقه ها بر روی یکدیگر بین آنها فاصله هوایی بوجود می آید و در نتیجه در سطح مقطع هسته همیشه یک شکاف وجود دارد که اجتناب ناپذیر است .

انواع هسته های ترانسفورماتور

ساختمان هسته ترانسفورماتورهای معمولی بدو صورت کلی ساخته می شوند.

الف : هسته نوع معمولی

ب : هسته نوع زرهی

البته ترانسفورماتور با هسته های حلزونی یا مارپیچ هم ساخته می شود، ولی قسمت عمده را در صنعت تشکیل نمی دهد.

از نظر فیزیکی در ترانسفورماتور با هسته معمولی سیم پیچی اولیه و ثانویه در دو طرف بازوهای هسته و بصورت مجزا پیچیده می شوند. در حالیکه در نوع زرهی که کاربرد بیشتری هم دارد ، این سیم بندی بر روی قسمت وسط ( اولیه و ثانویه ) روی هم پیچیده می شوند . و از نظر اقتصادی راندمان کار بیشتر دارد و ارزان تر تمام می شود . به شکل (4) توجه کنید.

پراکندگی مغناطیسی :

در بحث قبلی فرض بر این بود که تمام فوران مغناطیسی سیم پیچهای ثانویه را قطع می کردند. اما در عمل غیر ممکن است که این شرط قابل تشخیص باشد. بهر حال معلوم شده است که تمام فوران ناشی از سیم پیچی اولیه سیم پیچهای ثانویه را قطع نمی کند بلکه قسمتی از آن یعنی مدار مغناطیسی را در هوا کامل کرده و از هسته نمی گذرد. این فوران پراکندگی موقعی که نیروی محرکه القائی بعلت تحریک آمپر دور اولیه بین نقاط b , a حادث می شود ، تولید می گردد و در امتداد راههای باریکه پراکندگی عمل می کند . بنابراین این فوران بعنوان پراکندگی اولیه معروف است و متناسب با آمپر دور اولیه است.

زیرا که دورهای ثانویه در اتصال مدار مغناطیسی تاثیر ندارد. فلوی با I1 هم فاز است و نیروی محرکه القایی را در اولیه ( نه در ثانویه ) ایجاد می کند . بهمین ترتیب عمل آمپر دور ثانویه( نیروی محرکه القایی ) در امتداد نقاط d, c فوران پراکندگی را ایجاد کرده و دور سیم پیچی های ثانویه ( نه دوره های اولیه ) با آن رابطه ای مستقیم دارد این فلوی با I2 همفاز بوده و نیروی محرکه القایی را در ثانویه تولید می کند ( نه در اولیه ) . در بارهای کم و بی باری آمپر دورهای اولیه و ثانویه کم هستند . و بنابراین فلوی های پراکندگی قابل صرفنظر هستند . اما موقعیکه بار افزایش می یابد از سیم پیچهای اولیه و ثانویه جریانهای زیادی می گذرد و بنابراین نیروی محرکه های آنها در حین عمل روی راههای باریکه بوجود آمده و فوران پراکندگی را افزایش می دهند.

همانطوریکه قبلاً گفته شد فوران پراکندگی متصل به هر سیم پیچ یک نیروی محرکه خود القاء در آن سیم پیچ تولید می کند بنابراین ، این اثر معادل یک مسدودکننده یا کوپل القایی که با هر سیم پیچ سری بوده ولتاژ در هر کدام از کوپل ها سری افت کرده و این مقدار افت ولتاژ معادل تولید شده بوسیلة فوران پراکندگی است.

بعبارت دیگر یک ترانسفورماتور با پراکندگی مغناطیسی معادل یک ترانسفورماتور ایده آل و یک کوپل القایی که با مدارهای اولیه و ثانویه در ارتباط است می باشد ، آنچنانکه نیروی محرکه القائی داخلی در هر کدام از کوپل های القایی معادل فوران پراکندگی است .




خرید فایل


ادامه مطلب ...

بررسی کاربرد انرژی برق

بررسی کاربرد انرژی برق


مقدمه

به همان اندازه که سلولهای اندام یک موجود زنده به خون نیاز دارد اندام جوامع صنعتی نیز محتاج جریان الکتریکی می باشد. زندگی امروز دیگر بدون شبکه وسیع انرژی الکتریکی که با انشعابات زیاد مجتمعهای بزرگ و کوچک صنعتی و مسکونی را تغذیه می نمایند قابل تصور نیست. انرژی الکتریکی در مقایسه با سایر انرژی‌ ها از محاسن ویژه ای برخوردار است. به عنوان نمونه می توان خصوصیات زیر را نام برد:

1- هیچ گونه محدودیتی از نظر مقدار در انتقال و توزیع این انرژی‌ وجود ندارد.

2- عمل انتقال این انرژی‌ برای فواصل زیاد به سهولت امکان پذیر است.

3- تلفات این انرژی‌ در طول خطوط انتقال و توزیع کم و دارای راندمان نسبتاً بالایی است.

4- کنترل و تبدیل و تغییر این انرژی‌ به سایر این انرژی‌ ها به آسانی انجام پذیر است.

به طور کلی هر سیستم انرژی‌ الکتریکی دارای سه قسمت اصلی می باشد:

1- مرکز تولید نیروگاه 2- خطوط انتقال نیرو 3- شبکه های توزیع نیرو

معمولاً نیروگاهها با توجه به جوانب ایمنی و اقتصادی و به خصوص با توجه به نوعشان (آبی، بخاری و گازی). درمسافتی دور از مصرف کنندگان ساخته می شود. وظیفه خطوط انتقال نیرو با تجهیزات مختلف مربوطه، این است که انرژی تولید شده را به شبکه های توزیع منتقل نمایند.

عمل انتقال نیروهای برق با فشار الکتریکی کم امکان پذیر نیست بلکه جهت انتقال از فشار الکتریکی زیاد استفاده می شود، که بعداً در محل نزدیکی مصرف به فشار الکتریکی کم تبدیل شده و توزیع خواهد شد. اگرچه جهت مصرف کنندگان عمده نیز امکان تغذیه با فشار کم وجود دارد ولی در این گونه موارد بهتر است که مستقیماً انشعاب فشار قوی داد.

خلاصه اینکه در هر مجتمع بزرگ صنعتی و یا در هر شهری حداقل یک شبکه فشار قوی بایستی وجود داشته باشد تا در نقاط مختلف شبکه های فشار ضعیف را تقویت کنند و انتخاب این فشار تابع بزرگی محل و بار شبکه خواهد بود. برای این که بتوان سیستم های مختلف انتقال و توزیع نیروی برق را به یکدیگر مرتبط نمود از فشارهای استاندارد شده زیر استفاده می شود:

v(230-400)

kv(11-20-33)

kv(63-132)

kv(230-400)

فشار ضعیف

فشار متوسط

فشار قوی

فشار خیلی قوی

در ایران جهت استفاده تغذیه مصرف کنندگان عموماً از جریان متناوب فشار ضعیف (v220/v380) استفاده می شود. همچنین جهت استفاد تغذیه پستهای فشار ضعیف (380) ولتی و فشار متوسط kv20 جهت تغذیه پستهای فشار متوسط از فشار قوی 63 کیلو ولت استفاده می شود.

نقش شبکه توزیع (فشار ضعیف و فشار متوسط) یک شهر را چه از نظر حجم و چه از نظر وسعت و چه از نظر ارزش و اهمیت می توان به مویرگهای بدن تشبیه نمود که به مزین و مهتدین فطینو یعنی تغذیه مصرف کنندگان را عهده دار می باشند.

حال برای درک بهتر از مطلب سیستم توزیع نیروی برق و تقسیمات آن به شرح سیستم برق می پردازیم.

انواع سیستم توزیع

قسمتی که تحت عنوان توزیع مورد استفاده در صنعت برق می باشد یعنی از پست تغذیه تا وسایل اندازه گیری واقع در محل مصرف کننده می تواند به دو بخش فرعی تقسیم شود:

1- توزیع اولیه: که در آن بار به ولتاژی بالاتر از ولتاژ مصرف برده شود و از پست توزیع به محلی که در آن ولتاژ به میزان ولتاژ مصرف کننده پایین می آید تا مشترک انرژی مورد نیاز خود را مصرف نماید.

2- توزیع ثانویه: که شامل قسمتی از سیستم است که دارای ولتاژ مصرف کننده بوده و به لوازم اندازه گیری مصرف کننده ها منتهی می شود. سیستم های توزیع اولیه شامل سه نوع اساسی هستند.

1- سیستم شعاعی، شامل سیستم های دو گانه و تبدیل

2- سیستم حلقوی، شامل حلقوی باز و حلقوی بسته

3- سیستم شبکه ای (غربالی)

1- سیستم شعاعی: سیستم شعاعی ساده ترین و یکی از عمومی ترین نوع مورد استفاده است و شامل تغذیه کننده ها و مدارهای شعاعی مجزا بوده که از پست یا منبع منشعب می شود. معمولاً هر فیدر سطح معینی را تغذیه می کند. فیدر شامل قسمت اصلی یا تنه فاشدی است که با ترانس توزیع مرتبط است و از آن جا انشعابات اصلی یا فرعی خارج می شود که در شکل (2) نشان داده شده است.


معمولاً انشعابات فرعی از طریق فیوز به مدارهای فشار متوسط اصلی متصل می‌شود، به طوری که یک اتصالی در انشعابات فرعی، نمی تواند باعث قطع برق در سرتاسر تغذیه کننده باشد. اگر فیوز از رفع اتصالی خط عاجز بماند یا اتصالی در تغذیه کننده اصلی توسعه یابد کلید قدرت درست یا منبع باز خواهد شد و سرتاسر تغذیه کننده را بی برق خواهد کرد. برای پایین نگه داشتن وسعت و مدت قطعی برق تجهیزاتی برای جدا کردن تغذیه کننده در نظر گرفته می شود، به طوری که قسمت‌های سالم هرچه سریع تر دوباره برق دار شود. برای به حداکثر رساندن سرعت برق‌دار کردن مجدد، در هنگام طراحی و ساخت از ارتباط اضطراری به تغذیه کننده های مجاور استفاده می شود.

بنابراین هر قسمتی از تغذیه کننده که مشکلی نداشته باشد، می تواند به تغذیه کننده‌های مجاوز متصل شود. در بیشتر حالات، غیر همزمانی بارها بین تغذیه کننده‌های مجاور به اندازه کافی موجود بوده تا نیازی به نصب ظرفیت اضافی برای مواقع اضطراری نباشد. قطع طولانی برق بیمارستان ها، تاسیسات نظامی و دیگر مصرف کننه های حساس قابل تحمل نمی باشد.

در چنین شرایطی فیدر دوم (اضافی) پیش بینی می شود که گاهی در مسیر جداگانه‌ای قرار می گیرد تا از منبع دیگری تغذیه شود. اتصال از تغذیه کننده عادی به تغذیه کننده جایگزین به وسیله قطع و وصل کننده تبدیلی انجام می گیرد و امکان دارد به صورت دستی یا خودکار عمل نماید. در حالات دو دستگاه کلید قدرت مجزا نصب می شوند تا در هر فیدر یک کلید قدرت با اتصالات الکتریکی به منظور جلوگیری از اتصال اشتباه فیدر سالم به معیوب استفاده شود. شکل (3)

2- سیستم حلقوی: راه دیگری که طول مدت قطعی برق را محدود می سازد، استفاده از تغذیه کننده هایی است که به صورت حلقوی طراحی شده و امکان تغذیه از دو سوار برای مصرف کننده های بحرانی (حساس) فراهم می سازد. در این جا اگر تغذیه از یکسو دچار مشکل شود، تمام بار تغذیه کننده از سوی دیگر جریان می‌گیرد. به شرطی که ظرفیت ذخیره کافی در تغذیه کننده در نظر گرفته شود. این نوع سیستم امکان دارد در حالت عادی به صورت حلقوی باز یا حلقوی بسته عمل کند.

حلقوی باز: در سیستم حلقوی باز، بخش های متعدد تغذیه کننده از طریق وسایل جدا کننده (فیدر، کلید و غیره) به همدیگر متصل شده و بارها هم به بخش‌های فوق متصل شده اند و هر دو نفر تغذیه کننده به منبع تغذیه متصل شده است. در یک نقطه از پیش تعیین شده ای از فیدر، وسیله جدا کننده به صورت باز نصب می گردد.

اساساً سیستم حلقوی باز از دو فیدر تشکیل می شود. که انتهای آنها به وسیله جدا کننده ای مانند فیوز، کلید یا کلید قدرت به هم مرتبط شده اند. به هنگام وقوع اتصالی، بخشی از مدار فشار متوسط که اتصالی در آن رخ داده است از دو طرف قطع می‌شود و سرویس دهی به قسمت سالم به این صورت انجام می شود که ابتدا حلقه در نقطه‌ای که در حالت عادی باز گذاشته شده است، بسته می شود و سپس کلید قدرت در پست دیگر وصل می شود.



شکل (4). چنین حلقه هایی در حالت عادی پست نمی شوند، وقتی اتصالی باعث باز شدن قطع کننده ها در دو طرف شوند سرتاسر تغذیه کننده بی برق شده و معلوم نمی‌شود که اتصالی کجا رخ داده است. وسایل جدا کننده بین بخش ها نسبتاً ارزان هستند.

حلقوی بسته: در جایی که درجه بالاتری از قابلیت اطمینان مورد نظر است، فیدر به صورت حلقوی بسته مورد بهره برداری قرار می گیرد. در این جا معمولاً وسایل جدا کننده کلیدهای قدرت بسیار گران قیمت هستند. قطع کننده ها بوسیله رله هایی تحریک می‌شوند تا فقط برای باز کردن کلیدهای قدرت واقع در دو طرف قسمت معیوب عمل نمایند، بقیه قسمت تغذیه کننده سرتاسری برق دار باقی می ماند. در بیشتر نمونه ها، فعالیت مناسب رله فقط به وسیله سیم های راهنما (پیلوت) صورت می گیرد که از کلید قدرتی به کلید قدرت دیگر کشیده می شود که نصب و نگهداری آن پرهزینه می‌باشد. در برخی نمونه ها، این سیم های راهنما از طریق اجاره خطوط تلفن صورت می گیرد. شکل (5)

گوشی فرکانس یاب و متعلقات آن

همانگونه که در شکل پیداست با کلید شماره 2 و فشار دادن آن باطری دستگاه را آزمایش می کنند که اگر روی خط مشخص شده در روی نشانگر فرکانس قرار گیرد نشان دهنده داشتن باطری لازم برای انجام کار است و با کلید شماره 1 دستگاه روشن می شود.

اتصالی در کابلها و طریقه پیدا کردن اتصالی در کابل

در چه صورتی اتصالی رخ می دهد؟

یکی از مهمترین مسائلی که در عیب‌یابی مطرح است بحث اتصال کابل می‌باشد. زمانی اتصالی رخ می دهد که هادی با سیم سربی زمین شده در تماس باشد در اصطلاح عیب‌یابی به این نوع عیب اتصالی کابل با زمین می گویند و همانطور که در مقدمه ذکر شد از مهمترین عوامل ایجاد اتصالی در کابلها رطوبت- کلنگ خوردگی- ضربات مکانیکی- نفوذ آب در کابل یا مفاصل- پوسیدگی کابل- استفاده نکردن از کابل به مدت طولانی می باشد. عملیات پیدا کردن اتصالی در کابل به ترتیب شماره عبارتند از:


و همانطور که در شکل پیداست تا استفاده از دستگاه تخلیه را «عملیات مقدماتی» و بعد از آن را «عملیات نهائی» گویند اولین مرحله تست کابل توسط دستگاه تستر می‌باشد که نتایج آن عبارتند از:

1) کابل سالم

2) کابل اتصالیک

الف- اتصالی یک فاز با زمین

ب- اتصالی دو فاز با زمین

ج- اتصالی سه فاز با زمین

در اتصالی احتمال اتصال دو فاز با یکدیگر و یا سه فاز با یکدیگر بسیار کم است زیرا هر فاز دارای لایه سربی و عایقهای پی وی سی در اطراف خود هست و نیز معمولاً روی سطح کابل به علت کلنگ خوردگی یا عدم کیفیت کابل صدمه می بیند و نیز تمایل حرکت الکترون بیشتر به طرف زمین است تا به طرف از مقابل بنابراین معمولاً اتصالی بین فازها و لایه سربی زمین شده ایجاد می شود.

همانطور که می دانید پست 63 کیلوولت چندین فیدر خروجی دارد بر روی هر فیدر چندین پست قرار می گیرد (شکل زیر).



که بین هر پست سکسیونر قرار دارد که برای تشخیص عیب کافی است که از یک قسمت تا قسمت دیگر یا از یک پست تا پست دیگر(بین دو سکسیونر) یک سکسیونر را قطع می کنند مثلاً در شکل زیر بعد از قطع سکسیونر هر دو طرف B,A را تست می کنند تا ببینند که در کدام طرف فالت مورد نظر ایجاد شده

خطوط بین دو پست همواره 20 کیلوولت است است (منظور از 20 کیلوولت ولتاژ بین دو فاز است) در پستهای 63 کیلوولت معمولاً اگر فالتی روی خط پیش بیاید رله‌های روی دیزنگتورها فرمان قطع سه فاز را به مدار می دهد اما در پستهای 20 کیلوولت در صورت بروز حادثه خود دیزنگتور عمل کرده و فازها را قطع می کند چگونگی ورود خط 20 کیلوولت و خروجی آن به صورت 380 ولت در پستهای (ولت 380/20 کیلوولت) را در قسمت مربوطه توضیح خواهیم داد.



مسیریابی کابلهای 20 کیلوولت

در بعضی نقاط ممکن است پیمان کاران بخواهند که کابل دیگری را در مسیر قرار دهند و یا کابل مورد نظری را تغییر مسیر دهند بنابراین احتیاج به محل دقیق کابل قبلی دارند معمولاً در نقشه اداره برق کلیه کابلها و مسیر آنها مشخص می باشد در عمل و در گذرگاهها و پیاده روها محل دقق آن ذکر نشده بنابراین احتیاج به پیدا کردن محل دقیق کابل خوابانده شده دارد که این امر به واحد عیب‌یابی مربوط می شود.

برای مسیریابی در اکیپ عیب‌یابی از دستگاه فرستنده فرکانس صوتی استفاده می‌شود که همانطور که مفصلاً در فصول قبل توضیح داده شد باید این دستگاه را مچ کرد معمولاً رنج دستگاه فرکانس صوتی را روی 12 کیلوهرتز قرار می دهند. برای مسیریابی ابتدا کابل رابط را از درون ماشین به داخل پست و به یکی از فازهای کابل بی‌برق مورد نظر متصل می کنیم سپس همان فاز را با یک دو راهی به سیم زمین تابلو متصل می کنیم لازم به ذکر است که برق داخل اتومبیل برای راه اندازی دستگاههای داخل آن را از درون پست می گیرد سپس با دستگاه فرستنده فرکانس صوتی فرکانس مورد نظر را درون کابل اعمال می کنیم سپس با گوشی فرکانس یاب مسیر کابل را می‌توان گوش کرد به همان صورت که در بخش توضیح دستگاه فرکانس یاب ذکر شد. در مواقعی مسیر کابل معین می شود پس از حفاری توسط پیمانکار یا اکیپ مفصل بند ممکن است دو یا سه رشته کابل از محل عبور کرده باشد که در اینجا احتیاج به تعیین کابل توسط اکیپ عیب‌یاب می باشد.




خرید فایل


ادامه مطلب ...

بررسی پست های برق

بررسی پست های برق


مقدمه

ازآنجایی که برای تاسیس پستهای انتقال انرژى بودجه عظیمی مصرف و ماهها وقت لازم است تجهیزات و وسایل آن خریداری و تهیه و نصب و راه اندازی گردد لازم است از نگهداری آن نهایت دقت و تلاش به عمل آید در جهان امروز خصوصاً در کشورهای پیش رفته صدمه دیدن تجهیزات و دستگاههای موجود در پستهای برق تحت هر عنوانی تقریبا موضوعی منسوخ و فراموش شده است .زیرا که صدمه دیدن تجهیزات و دستگاههای موجود در پستهای انتقال انرژی کلا ناشی از چندعامل بوده که ذیل به این عوامل اشاره شده است : 1-عوامل خارجی (External) :مانند برخورد صائقه به خطوط انتقال انرژی با تجهیزات موجود . 2-عوامل داخلی (I nternal) : مانند اضافه ولتاژ های ناشی از قطع و وصل مدار (Translent Dver Voltage) 3- عوامل جوی : مانند باد –باران –یخ زدگی- سرمای شدید و… 4-عوامل ناشی از بهره برداری غیراصولی : مانند عدم بازدید به موقع و اصولی از تجهیزات در حال کار, عدم توجه به عیوب و اشکالات پیش آمده و اعمال در گزارش آنها (مخصوصا در مراحل اولیه عیب) ,عدم به کارگیری مقررات و دستورالعملهای تدوین شده 5- عوامل مربوط به سرویس و نگهداری صحیح تجهیزات : مانند تاخیر در سرویس دستگاهها عدم استفاده از دستورالعملهای سازنده و…پشرفت تکنولوژی و دانش و تجربه بشری و به کار گیری حفاظت های لازم در طراحی اولیه دستگاههای برق سبب شده است که دیگر عوامل جوی و یا عوامل داخلی و خارجی نتواند موجب صدمه دیدن تجهیزات و دستگاههای موجود در دستها گردد اما عدم بهره برداری و یا سرویس نگهداری صحیح هنوز در بعضی از کشورها و در برخی از بخشهای کشور ما نیز یکی او عوامل عمده در صدمه دیدن تا هنگام تجهزات و عدم استفاده کامل از عمرمفید بسیاری از این دستگاهها (مخصوصاً تجهیزات آسیب پذیر در سوئیج پستها)باشد.

بازدیدهایی که توسط کارشناسان مختلف ازپستهای برق بعضی از کشورهای صنعتی به عمل آمده است نشانگر آن است که در اکثراین کشورها ,اپراتورهای پستها از بین افراد با تجربه که دارای شناخت کافی از تجهیزات پستها می باشند . انتخاب می شوند زیرا که آنها می توانند با دانش و تجربه خود و با به کارگیری مقررات و دستورالعملهای موجود از بسیاری از صدمات وارده به تجهیزات جلوگیری و در مواقع اضطراری با تصمیم گیری صحیح و به موقع در خروج دستگاههای معیوب از خارشی های گسترده جلوگیری نمایند.

اطلاعات مورد نیاز برای انتخاب محل پست

پارامترهائی که اثر عمده ای برای انتخاب محل پست دارند عبارتند از :

1-نوع پست

در رده ولتاژی 230kv,400kv پستها به دو صورت معمولی و گازی می تواند احداث کردند که بسته به پست فضای و زمین مورد نیاز خواهد بود به علاوه مشخص شدن پست در عواملی که برای تعیین محل پست دخالت خواهند داشت تاثیر خواهد گذارد به طوریکه پستهای نوع گازی از عوامل خارجی وجوی مانند آلودگی ها جوی و حیوانات و پرندگان مصون بوده ولی پستهای روباز از عوامل خارجی تاثیر زیادی خواهند پذیرفت .

2-برآورد بار و ظرفیت پست :

ظرفیت در نظر گرفته شده برای پست با توجه به برآورد بار فعلی مرکزیت ثقل بار در برآورد فعلی (حل تراکم آن) و رشد ایمنی بار منطقه یعنی پیش بینی کوتاه مدت و پیش بینی دراز مدت صورت خواهد گرفت که تاثیر به سزایی در مساحت پست خواهد داشت .

3-تعداد فیدرها و سطوح ولتاژ:

تعداد سطوح ولتاژ پست تعداد فیدرهای هرسطح ولتاژی نقش تعیین کننده ای در رابطه با فضای مورد نیاز پست خواهد داشت .

4-جهت و محل ابتدا و انتهای خطوط انتقال نیرو :

برای سهولت ورود خروج خطوط از پست به دیگر پستها لازم است تعداد خطوط انتقال توجه به توسعه آن و هم اینطور جهت آنها مشخص باشد تا با انتخاب محل مناسب پست در ارتباط با مسیر خطوط و طول آنها انتخاب اصلح صورت گیرد .

نقش روغن در ترانس :

روغن در ترانسها دو نقش مهم دارد اولا" بهمراه کاغذ بعنوان عایق عمل مىکند ثانیا" عمل انتقال حرارت ناشى از تلفات مس و اهن را بعهده دارد.

تلفات اهن : تلفات ناشى از فوکو وهسترزیس

تلفات مس : تلفات ناشى از-------

بنابراین روغن انتخابى باید داراى استقامت الکتریکى زیاد , ضریب تلفات عایقى کم ومقاومت مخصوص زیاد باشد روغن انتخابى باید داراى جکالى کم باشد تا بتواند لابلاى سیم بیج ها و بردهاى رادیاتور حرکت نموده وعمل انتقال حرارت را انجام دهد . همجنین روغن انتخابى باید داراى نقطه اشتعال بالا باشد تا بعنوان عامل محرکى جهت اتش سوزى نباشد . روغن انتحابى نباید موادى تولید نماید که باعث خوردکى کاغذویا اجزاء دیکر ترانس کرددویا در خود رسوبات ولجن تولید کند که باعث جلوکیرى از کردش روغن شود.


استقامت الکتریکى روغن :

در هنکام کار ترانس روغن ترانس در معرض درجه حرارتى در حدود—95 است لذا روغن دائما" در معرض تغییرات شیمیایى بوده وبا کذشت زمان تغییر رنک داده وکدر مىشود زیرا موادى مثل اسیدها , رزین ها و رسوبات در روغن تشکیل مىشود این اسیدها به کاغذ موجود در روغن یا قسمتهاى فلزى حمله ور شده وباعث از بین رفتن انهامىشود همجنین رسوبات و رزین ها روى هسته وسیم بیج هاى ترانس نشسته مانع حرارت وخنک شدن هسته مىشوند براى روغن ها عدد اسیدى که میزان غلظت اسیدى را در روغن نشان مىدهد نباید از3 % بیشتر و میوان غلظت روسوبات نباید از 5 % بیشتر باشد

از طرفى در قسمت بالاى ترانس یک منبع انبساط روغن وجود دارد که روغن رادرترانس مىجرخاند از طریق این قسمت روغن با هواىاطراف در ارتباط است اکر روغن رطوبت هوا را جذب کند استقامت الکتریکى ان بشدت کاهش وتلفات عایقى ان افزایش مى یابد براى جلوکیرى از جذب رطوبت هوا از یک رطوبت کیر یا سیلیکازل در قسمت منبع انبساط روغن استفاده مىشود براى تشخیص مناسب یانامناسب بودن یکا روغن مشخصات مهم ان عبارتست از:

1-بررسى ولتاز فروباشى یا استقامت الکتریکى

2-بررسىضریب تلفات عایقى

3-تعین مقاومت مخصوص روغن

4-تعین غلظت اسیدى

5-تعین غلظت رسوبات

6-تعین میزان رطوبت داخل روغن

7-تعین میزان کازحل شده در روغن

8-میزان ضریب شکست نور در روغن

9- رنک ووضعیت ظاهرى

10-نقطه اشتعال

11-تعداد وابعاد ذرات معلق روغن




خرید فایل


ادامه مطلب ...

بررسی انواع موتورهای برق

بررسی انواع موتورهای برق


انواع موتورهای متناوب :

چون مقدار زیادی از قدرت الکتریکی تولید شده بصورت متناوب میباشد ، بیشتر موتورها طوری طرح شده اند که با جریان متناوب کار کنند . این موتورها در بیشتر موارد میتوانند دو برابر موتورهای جریان مستقیم کارکنن و زحمت آنها در موقع کارکردن کمتر است ، چون در موتورهای جریان مستقیم همیشه اشکالاتی در کموتاسیون آنها ایجاد میشود که مستلزم عوض کردن ذغالها یا زغال گیرها و یا تراشیدن کلکتور است . بعضی موتورهای جریان متناوب با موتورهای جریان مستقیم کاملا فرق دارند ، بطوریکه حتی در آنها از رینگ های لغزنده هم استفاده نمیشود و برای مدت طولانی بدون ایجاد درد سر کار میکنند .

موتورهای جریان متناوب ، عملا برای کارهایی که احتیاج به سرعت ثابت دارند ، مناسب هستند . چون سرعت آنها به فرکانس جریان متناوب اعمال شده به سر های موتور ، بستگی دارد . اما بعضی از آنها طوری طرح شده اند که در حدود معین ، دارای سرعت متغیر باشد .

موتورهای جریان متناوب میتوانند طوری طرح شوند که با منبع جریان متناوب یک فاز یا چند فاز کار کنند . ولی چه موتور یک فاز باشد و یا چند فاز ، روی اصول یکسانی کار میکنند ، اصول مزبور عبارتست از این که جریان متناوب اعمال شده به موتور یک میدان مغناطیسی گردانی تولید میکند و این میدان باعث میشود که روتور بگردد .

موتورهای جریان متناوب عموما به دو نوع تقسیم بندی می شوند :

1-موتورهای سنگرون

2- موتورهای القایی .

موتور سنکرون در واقع یک آلترناتور است که بعنوان موتور کار میکند و در آن جریان متناوب به استاتور و جریان مستقیم به روتور اعمال میشود موتورهایی القایی شبیه به موتورهای سنگرون هستند با این تفاوت که در آنها روتور به و منبع قدرت وصل می شود .

از دو نوع موتورهای جریان متناوب ذکر شده ، موتورهای القائی به مراتب خیلی بیشتر از موتورهای سنکرون مورد استفاده قرار میگیرند .


میدان گردان :

همانطور که گفته شد میدان گردانی که از اعمال جریان متناوب به موتور ، تولید میگردد باعث گردش روتور میشود . اما قبل از اینکه یاد بگیرید چگونه یک میدان گردان باعث حرکت روتور میشود ، باید اول درک کنید که چگونه یک میدان گردان باعث حرکت روتور میشود ، باید اول درک کنید که چگونه میتوان میدان مغناطیسی گردان تولید کرد . دیاگرام زیر، یک استارتور سه فازه را نشان میدهد که جریان متناوب سه فاز آن اعمال شده است ، همانطور که نشان داده است ، سهم پیچها بصورت دلتا به یکدیگر اتصال دارند و کلاف هر یک از سیم پیچها بصورت دلتا به یکدیگر اتصال دارند و دو کلاف هر یک از سیم پیچها در یک جهت سیم پیچی شده است .

در هر لحظه ، میدان مغناطیسی تولید شده بوسیله هر یک از سیم پیچها بستگی دارد به جریانی که از آن میگذرد . اگر جریان صفر باشد ،میدان مغناطیسی هم صفر خواهد بود اگر جریان ماکزیمم باشد ، میدان مغناطیسی هم ماکزیمم خواهدبود و چون جریان فازها 120 درجه با هم اختلاف فاز دارند ، میدان های مغناطیسی تولید شده هم 120 درجه با هم اختلاف فاز خواهند داشت . حال سه میدان مغناطیسی مزبور که در هر لحظه وجود دارند ، با هم ترکیب میشوند و یک میدان منتجه تولید میکنند که روی روتور عمل میکند . در آینده خواهید دید که هر لحظه میدان های مغناطیسی ترکیب میشوند ، میدان مغناطیسی منتجه پیوسته در حال حرکت است و بعد از هر سیکل کامل جریان متناوب ، میدان مغناطیسی مزبور هم با اندازه 360 درجه یا یک دور دوران میکنند.

دیاگرام زیر ، شکل موج جریانهای اعمال شده به استاتور سه فازه مزبور را نشان میدهد . این شکل موج ها 120 درجه با هم اختلاف فاز دارند . شکل موجهای مزبور میتوانند نشان دهنده سه میدان مغناطیسی باشد که بوسیله هر یک از سیم پیچ تولید میشود . به شکل موجها وابسته شده است که مشابه فاز مربوطه میباشد با استفاده از شکل موجها ، میتوانیم در هر 6/1 دور ( معادل 60 درجه ) میدانهای مغناطیسی تولید شده را با هم ترکیب کنیم تا جهت میدان مغناطیسی منتجه پیدا شود. در نقطه 1 ( شکل موج C مثبت وشکل B منفی است .به عبارت دیگر جریانهای گذرنده از سیم پیچ های فاز C,B غیر هم جهت هستند و بنابراین جهت میدانهای مغناطیسی ناشی از C,B هم غیر هم جهت هستند . در بالای نقطه 1 جهت میدان بطرز ساده ای نشان داده شده است . توجه داشته باشید که B1 قطب شمال و B قطب جنوب است همین ترتیب C قطب شمال و C1 قطب جنوب است . چون درنقطه1 هیچ جریانی از سیم پیچ فاز نمیگذرد ، میدان مغناطیسی آن صفر است .



ریله حرارتی :

دستگاههای الکتریکی و الکترونیکی ، معمولا بوسیله فیوزها ور یله های حرارتی (که در آنها از اثر حرارتی جریان برق استفاده میشود ) در مقابل جریان زیادی حفاظت میشوند.

فیوز بطور ساده یک قطعه کوچک فلز است با نقطه ذوب پائین که بطور سری با مداری که باید حفاظت شود ، قرار میگیرد وقتی جریان گذرنده از مدار ، از مقدار معینی تجاوز کرد . فلز فیوز ذوب خواهد شد و مدار را قطع خواهد کرد باید توجه داشت که اگر چه فیوز ، ساده و ارزان است اما عیبش اینست که تقریباً بطور انی عمل میکند( وقتی جریان گذرنده از فیوز برای یک لحظه از مقدار معینی تجاوز کرد فیوز میسوزد ) بنابراین فیوز میتواند برای حفاظت موتورها مورد استفاده قرار بگیرد چو نمیدانید که جریان راه اندازی موتور اکثرا بیشتر از جریان اسمی موتور است و از فیوز نمیتوان استفاده کرد ، اما ریله های حرارتی ، این عیب را از بین برده اند .یک نوع از ریله های حرارتی از دو فلز مختلف با درجه انبساط متفاوت ساخته شده است .دو فلز به یکدیگر جوش شده اند و آنها را تیغه بی متال می گویند .وقتی یک بی‌متال گرم شود ، بعلت یکسان نبودن درجه انبساط فلزها ، تیغه کج خواهد شد. تیغه بی‌متال نزدیک به سیم پیچی گرم کننده‌های قرار دارد که جریان موتور از دوون آن میگذرد . یک سرتیغه بی متال در جای محکم شده است ولی سر دیگر آن آزاد است و وقتی یک جریان زیادی از مدار بگذرد ، انتهای آزاد تیغه خم شده ، یک سری کنتاکت که با موتور سری هستند باز میشوند و در نتیجه مدار موتور قطع میشود و موتور میایستد.

ریله های حرارتی همچنین می توانند بعنوان وسایل تاخیر دهنده در بعضی دستگاهها بکار بروند وقتی یک کلید بسته میشود ، سیم پیچی گرم کننده ریله به یک منبع ولتاژ وصل میشود و بعد از مدت زمان معین تیغه خم سده و یک جفت کنتاکت را میبندد.

یک مورد بکاربردن ریله های حرارتی جریان زیادی در راه اندازه معمولی ، دستی هست که باموتور های جریان متناوب بکار میرود .

شکل نشان داده شده در زیر دیاگرام موتور سه فاز را نشان میدهد . سیم های منبع به نقاط L1,L2,L3 روی شکل . علائم بین نقاط نشان دهنده کنتاکت و سیم پیچی گرم کننده ریله حرارتی است . وقتی تکمه استارت فشرده نشده است ، سه کنتاکت بسته هستند و جریان برق موتور وصل شده است باعث کارکردن موتور میشود .اما اگر بار زیادی بر موتور وارد شود و موتور جریان زیادی بکشد . ریله حرارتی عمل خواهد مرد و تکمه استارت را آزاد میکند . کنتاکتها باز میشوند و موتور میایستد.

به یاد داشته باشید که ریله جریان حرارتی بعد از پیدا کردن علت جریان زیادی باید دوباره بادست در جای خود قرار بگیرد .

به همین ترتیب وقتی تکمه ایستادن ( تکمه دوم در شکل زیر ) فشرده شود ، تکمه استارت آزاد شده وکنتاکت ها باز میشوند وموتور میایستد.


کلیدهای قدرت :

کلید های قدرت ، ریله های مغناطیسی جریانزیادی هستند کهبرای حفاظت مدار از بار زیاد وسایر شرایط غیر عادی ، نظر افتادن ولتاژ و برعکس شده جهت جریان طرح شده اند .

چون کلید ها قدرت ، اساسا ریله هستند خیلی از مزایای ریله هارا دارند . انها بسرعت عمل میکنند وامکان دارد از دور کنترل شوند ومیتوانند طوری تنظیم شوند که با مقادیر جریان عمل کند .

یک نوع کلید قدرت که اغلب با آن سروکار داریم و خصوصیات معمولی همه نوع آنها را دارد . در این جا شرح داده میشود . این کلید دارای سه ردیف کنتاکت است، یک کنتاکت اصلی و دود کتتاکت مخصوص .

کتتاکت اصلی A، از نوارهای نازک مسی که به یکدیگر فشرده شده اند . ساخته شده است و به شکل قوس خم شده است ، وقتی کلید بستهاست انتهای قوس نوارهای مس باد و کنتاکت ثابت است ، قوس مسی تحت فشار است و انتهای نوارهای مس روی اتصال ثابتی را که قرار دارد . میپوشاند .کنتاکت مخصوص ( C) که کنتاکت قوسی نامیدهمیشود . دارای نوک های قابل حرکت کربنی میباشد که روی فنر های دراز مسی قرار گرفته اند کنتاکت مخصوص ( B) دارای یک فنر مسی سنگین با نوک مسی قابل حرکت میباشد.

در کلید های قدرت یک سیم پیچی وجود دارد که ممکن است بطور سری و یا موازی با مدار قرار بگیرد وقتی جریان درون سیم پیچی مقدار معینی زیاد شد ، سیم پیچی ، یک ضامنی را آزاد میکند تا به کنتاکت ها اجازه دهد که در اثر وزنشان و یا در نتیجه فنر کشیده شده باز شوند.


فهرست مطالب

عنوان صفحه

انواع موتورهای متناوب 1

میدان گردان 2

موتور سنکرون 5

موتور القایی 8

موتورهای القایی دو فازه 11

موتور یک فاز 14

موتورهای القایی با قطب های شکاف دار 18

موتور سنکرون 21

موتورهای القایی 23

دستگاههای الکترومکانیکی 25

مدارهای ریله 26

کلیدهای قدرت 29

ترانسفورماتور 31

پست های فشار قوی 31

انواع پست ها 32

اجزاء تشکیل دهنده پستها 36

ترانسفورماتورهای قدرت 37

دستگاههای حفاظت کنترل ترانسفورماتورها 38

رله بوخهلتس 39



خرید فایل


ادامه مطلب ...