دانلود انواع فایل

مقاله تحقیق پروژه دانش آموزی و دانشجویی

دانلود انواع فایل

مقاله تحقیق پروژه دانش آموزی و دانشجویی

بررسی برق میدان الکتریکی

بررسی برق میدان الکتریکی

تنها جملات خطی در میدان الکتریکی حفظ شده اند ، و فرکانسهای زاویه ای به نوسانات طبیعی مربوط می شود و انتظار می رود تا در حضور میدان نوسان ناپدید گردند . ضرایب برای اولین تخمین صورت زیر ارائه داده شده است .

که ما بجایی اختلال سریع در 0 ‏= t یک حد و یک افزایش آرام را در نظر گرفته ایم . با جایگزینی این نتیجه و ترکیب پیچیدة آن در معادلة ( 2 ـ 77 ) حاصل بدست می‌آید:

به دلیل اینکه معادلة ( 2 ـ 79 ) که در آن ، شکل معادلة (2ـ15) را دارد ، چنین استنباط می گردد که قابلیت پلاریزاسیون الکترونیکی وابسته به فرکانس بصورت زیر خوانده می شود :

( 2 ـ 80 )

یک ثابت بدون بعد ، با ویژگی گذار از :

( 2 ـ 81 )

شدت نوسان نامیده می شود . در حد فرکانس پایین ، که با معادلة ( 2 ـ 80 ) ارائه می گردد به قابلیت پلاریزاسیون استاتیک که با معادلة ( 2 ـ 19 ) تعریف شده ، تغییر می کند که برای به سادگی بدست می آید . پلاریزاسیون الکترونیکی ، یعنی معادلة ( 2 ـ 80 ) ، به صورت مجموع روی توزیع بسیاری از رزنانسهای الکترونیکی مربوط به انتقالهای اتمی ، نوشته می شود . هنگامیکه انرژی الکترو مغناطیسی اختلاف انرژی دو تراز الکترون را برابر می کند ، الکترون به موقعیت بالاتر منتقل می گردد . درصورت عدم وجود نوسان ، الکترون با انتشار فوتون در طول موجهای ماوراء بنفش یا کوتاهتر ، به موقعیت اولیه بر می گردد .

بنابراین بدیهی است که نمایش طرح وار آن که درشکل ( 2 ـ 6 ) ارائه می شود ،
تنها نمایانگر ناحیة فرکانسی است که در آن قابلیت پلاریزاسیون یونی مشخص
است .

مکانیک کوانتمی ، مدل توصیف قابلیت پلاریزاسیون یونی لورنتس را اثبات می کند که در آن الکترونها با نیروهای نیمه الاستیکی به محلهای ثابت متصل می شوند . مدل کلاسیک لورنتس ، روش ساده ای را برای ثابتهای اپتیکی دی الکتریکهای پر اتلاف ، فراهم می کند . که مستعدترین دی الکتریکها برای تخمین آزمایشی ساده می باشند . معادلة حرکت برای یک الکترون پیوند در یک میدان هارمونیک ، که دارای نیروی برگرداننده به حالت اول و نشان دهنده کاهش مقدار جنبش الکترون در نتیجة نوسانات می باشد ، به شکل زیر در می آید :

( 2 ـ 82 )

که و به ترتیب نیرو و ثابتهای نوسان می باشند . معادلة ( 2 ـ 82 ) حرکت هارمونیک نوسانی در اثر نیرو را توضیح می دهد که با جایگذاری در آن معادله داریم :

( 2 ـ 83 )

این جواب به نوسان در حالت ثابت و یکنواخت الکترونها در فرکانس میدان هارمونیک مربوط است .

اگر N تعداد الکتروها ی واحد حجم باشد ، و هر یک از آنها به اندازة مسافت از موقعیت تعادل خود حرکت نماید ، متوسط پلاریزاسیون الکترونیکی
می باشد که با جایگزینی معادلة ( 2 ـ 83 ) بدست می آید .

( 2 ـ 84 )

که فرکانس پلاسما می باشد :

( 2 ـ 85 )

مشخص می شود که برای z=1 و به تبدیل می شود . اگر ما حرکت یکنواخت الکترونهای پیوند را در نظر بگیریم ، میدان را می توان با معادلة
(2-28 ) ارائه داد و شکل معادلة ( 2 ـ 84 ) بصورت زیر می شود :

( 2 ـ 86 )

که می توان آن را برای حل نمود تا معادلة زیر بدست آید :

( 2 ـ 87 )

که فرکانس رزنانس بصورت زیر داده می شود :

( 2 ـ 88 )

این نتیجه که مشابه نتیجة بدست آمده از قابلیت قطبی شدن یونی ، معادلة (2-73) ، می باشد نشان می دهد که هر گاه الکترونها به جای اتمهای مجزا به یک شبکه بلوری متصل شوند ، فرکانس رزنانس توزیع الکترونیکی در گذردهی نسبی تغییر می کند . با توجه به معادلة (2 ـ20 ) ، معادلة ( 2 ـ 84 ) پذیرفتاری پیچیده الکترون را مشخص
می کند :

( 2 ـ 89 )

حتی اگر بارهای آزاد وجود نداشته باشند ، یک دی الکتریک اتلافی را توصیف می کند . با جایگذاری معادلة ( 2 ـ 89 ) در معادلة می توان
به یک گذردهی پیچیده دست یافت که بصورت زیر نوشته می شود :

( 2ـ 90 )

می توان ثابتهای اپتیکی را به شکلی مشابه ثابتهای مناسب برای جامدات هادی نور ، ، وارد نمود به شرط آنکه ضریب شکست داده شده کمیتی پیچیده باشد . اگر به اندازة کافی کوچک باشد برای آنکه مقدار مطلق عدد مرکب در سمت راست در مقایسه با واحد کوچک باشد ، برای تمام فرکانسها می توانیم تخمین بزنیم :

( 2 ـ 91 )

که ثابتهای اپتیکی n و ni بصورت زیر ارائه می شوند :

( 2 ـ 92 )

در یک ناحیه به اصطلاح هادی نور ( شفاف ) ، که برای فرکانسهای زیر فرکانس رزنانس روی می دهد ، که ، معادلات ( 2 ـ 92 ) نشان می‌دهند که و ما رابطة پراکندگی را بدست می آوریم که وابستگی فرکانس به n را بصورت زیر ارائه می دهد :

( 2 ـ 93 )

این ضریب شکست یا انکسار بیشتر از یک است و با افزایش فرکانس افزایش
می یابد . چنین رفتاری که مختص اکثر بلورهای یونی و مولکولی در ناحیة مرئی طیف است ، پراکندگی نرمال نامیده می شود .

در مجاورت فرکانس رزنانس ما را تنظیم می‌کنیم بطوریکه و معادلات ( 2 ـ 92 ) بصورت زیر تغییر می کنند :

( 2 ـ 94 )

همانگونه که در شکل ( 2 ـ 7 ) ترسیم می گردد n و ni وابسته به فرکانس می باشند . ناحیة فرکانس که در آن n بطور مشخص از صفر تغییر می کند ، ناحیة جذب نامیده می شود در این ناحیه n برای به حداکثر می رسد و سپس در تا حداقل کاهش می یابد . این رفتار بعنوان پراکندگی غیر عادی مورد توجه قرار می گیرد که

(5-1) شکست دی الکتریکی :

تعریف : خرابی دی الکتریکها تحت تنش الکتریکی شکست نامیده می شود و از نظر عملی زمینة مطالعة فوق العاده مهمی است . اغلب دیده می شود که مواد مشابه تحت شرایط صنعتی واقعی ، گسترة وسیعی از قدرتهای دی الکتریکی را که به نوع کاربردشان وابسته می باشند ارائه می دهند . بهر حال ، حتی در جایی که به ظاهر شرایط کاربردی و توزیع میدان یکسانند دیده می شود که باز هم شکست در گسترة وسیعی از تنشهای اعمال شده گسترده است علاوه بر آن تحت شرایط آزمایشگاهی ، اندازه گیریهای انجام شده عموماً این شکست را در قدرتهای میدان پایین تری از آنچه برای مادة خالص است ، بدست می دهند .

برای درک ساز و کارهای اساسی شکست ، لازم است شرایط کنترل شده در آزمون آزمایشگاهی دقیقاً حفظ شود . بنابراین از تمرکزهای میدان بالا در لبه های الکترودها باید جلوگیری شود و مادة تحت آزمایش باید خالص و همگن باشد و اتمسفر باید به دقت کنترل شود .

قبل از اینکه به بررسی تعدادی از سازو کارهای اساسی شکست بپردازیم لازم است ساختار الکترونی دی الکتریکهای خالص را بررسی کنیم .


(5ـ2) الکترونها در عایقها :

هنگامیکه اتمها برای تشکیل جامد نزدیک هم آورده می شوند ، ترازهای مجاز گسستة انرژی مربوط به الکترونها در اتم آزاد پهن شده و به نوارهای انرژی مجاز تبدیل
می شوند . در دمای صفر مطلق ، در بلور کامل بدون نقص ، این نوارها با الکترونهایی که دارای انرژی معین اند ، پر می شوند . با افزایش دما ، الکترونها انرژی کسب کرده و اگر انها دقیقاً مقدار انرژی انتقال را کسب کنند ، بخشی از انها به سطوح انرژی بالاتر حرکت می کنند .

نوارهای انرژی که مربوط به الکتروهای مقید به اتمهای مادر می باشند ، نوار ظرفیت نامیده می شوند . هنگامیکه الکترونها از چنین انرژیهایی انتقال می یابند ، از اتمهای مادر رها می شوند و نواری که به ان منتقل می گردند به نوار رسانایی موسوم است .
همینکه الکترونها در نوار رسانایی قرار بگیرند برای جابجایی در بلور آزاد خواهند
بود .

در عایقها نوارهای ظرفیت و رسانایی توسط گاف انرژی بزرگی از هم جدا هستند . این گاف چنان بزرگ است که در دمای اتاق الکترونها نمی توانند انرژی گرمایی لازم برای انتقال به نوار رسانایی را کسب کنند . بنابراین به اتمهای مادر مقید می مانند و چون قادر به جابجایی در بلور نخواهند بود رسانایی الکتریکی ایجاد نمی کنند .

بلور دی الکتریک کامل ، نارسانایی کامل با رسانندگی الکتریکی صفر خواهد بود . در عمل تمام بلورها باید یکی یا بیشتر از انواع ناکاملیهای زیر را شامل باشند .

1 ) تهیجاها و میانین ها : اینها در بلورهایی رخ می دهند که ناخالصی ندارند و دارای تناسب استیوکیومتری باشند . تهیجاها مکانهای شبکه ای خالی اند یعنی نقاطی که باید درآنها اتمها حضور داشته باشند ، ولی وجود ندارند . میانین ها ، یونهایی هستند که در موقعیتهای بین نقاط شبکه ای قرار گرفته اند ، یعنی نسبت به آرایة منظم اتمها در شبکة بلورین جابجا شده اند .

2 ) غیر استیوکیومتری : در بلوری که عنصر خالص نیست ، ممکن است مقدار کمی اضافه از یک نوع اتم ، نسبت به تناسبهای ترکیب دقیق شیمیایی بلور ، وجود داشته باشند . اتمهای اضافه می توانند به موقعیتهای میان شبکه ای منتقل شوند یا شبکه ممکن است خودش را باز ترتیب نماید بطوریکه تهیجاها وجود داشته باشند .

3 ) ناکامیهای ناشی از حضور اتمهای بیگانه : اثر این ناکامیها تغییر توزیع بار در بلور می باشد . که بعنوان تراکمهای موضعی بار عمل می کنند و می توانند الکترونهایی را که در بلور حرکت می کنند ، به دام اندازند . بدین طریق الکترونها از نوار رسانایی حذف می شوند . همینکه الکترون به دام می افتد ، حالتهای انرژی شبیه آنهایی را که در اتم منفرد در دسترس هستند اشغال می کند ، یعنی یک حالت پایه با تعدادی تراز برانگیختة قابل دسترس در بالای آن داریم .

قابل توجه است که تعادل الکترونی وقتی رخ می دهد که الکتروها برخورد کنند . این برخوردها ممکن است بین الکترونها در نوار رسانش ، بین یک الکترون رسانش و الکترون بدام افتاده و بین الکترون رسانش و شبکه رخ دهد . در بلور کاملاً خالص دو اتفاق اول کم است و ساز و کار اساسی ، بر هم کنش الکترون با شبکه می باشد . برای مواد بی شکل یا بلورهای خالص در دماهای بالا ، تعداد الکترونهای رسانش ، و به دام افتاده خیلی بیشتر هستند و دو ساز و کار اول غالب می باشند . تعداد الکترونها
بر واحد حجم ، n ، که انرژی آنها بین E+dE,E است از رابطه زیر بدست
می آید .

( 5 ـ 1 )

N تعداد کل الکترونهای موجود در واحد حجم است .

(5ـ3) سازو کار شکست :

هنگامیکه میدان بر بلور اعمال شود ، الکترونهای رسانش از آن انرژی دریافت خواهند کرد ، و بواسطة برخوردهای بین آنها این انرژی بین تمام الکترونها قسمت خواهد
شد . حال اگر بلور در وضعیت پایداری باشد این انرژی باید به طریقی اتلاف شود و اگر نسبتاً الکترونهای کمی وجود داشته باشند این عمل می تواند از طریق انتقال آن به شبکه بلور انجام گیرد . چنین انتقالی در صورتی رخ می دهد که دمای مؤثر الکترونها ، T ، از دمای شبکه ، TO بزرگتر باشد . بنابراین اثر میدان باعث افزایش دمای الکترون می شود و پس از برقراری تعادل حرارتی ، دمای جامد افزایش می یابد . برای حالت بلور ناخالص که در آن بر هم کنشهای الکترونی غالب است ، میدان ، انرژی الکترونها را افزایش می دهد و دمای الکترون نسبت به دمای شبکه بیشتر می شود . چون
محتمل ترین برخوردها آنهایی هستند که بین الکترونهای رسانش و به دام افتاده رخ می دهند ، افزایش دمای الکترون تعداد الکتروهای بدام افتاده ای را که به نوار رسانش می رسند ، افزایش خواهد داد .

این امر رسانندگی بلور را افزایش می دهد و همچنان که افزایش دمای الکترون ادامه می یابد ، مرحلة شکست کامل فرا خواهد رسید . این پدیده شکست دما – بالا نامیده می شود .

بر هم کنشهای الکترون – شبکه در بلور خالص غالب است . هنگامیکه میدان اعمال نشود ، الکترونها با شبکه ای که در دمای معین دارای محتمل ترین انرژی می باشد ، در تعادل خواهند بود . حال وقتیکه میدان اعمال شود ، الکترون از آن انرژی کسب
می کند . آهنگ کسب انرژی بستگی به این دارد که قبل از برخورد الکترون چه مدت توسط میدان شتاب داده می شود . آهنگ کسب انرژی با افزایش انرژی فزونی
می گیرد و همچنین با افزایش میدان نیز افزایش می یابد .



خرید فایل


ادامه مطلب ...

بررسی میدان مغناطیسی زمین

مقدمه

پس از پایان جنگ جهانی دوم، دولتها برای جبران خسارت جنگ روی به منابع طبیعی آوردند با شروع جنگ سرد مکتشفان بدنبال منابع مطمئن در کشورهای نزدیک آمریکا بودند که کانادا بهترین کشور بود هم از نظر وسعت و هم از نظر منابع معدنی.

فلزات پایه مانند مس، سرب، روی و نیکل، از طرفی شرایط بد آب و هوایی از قبیل سرمای زیاد و یخبندان در قسمتی از سال اکتشافی را سخت می کرد و مهمترین عامل فاکتور زمان بود که تأخیر در هر مرحله باعث موکول شدن ادامه عملیات به فصل بعدی شود از طرفی روشهای کند ژئوفیزیکی نیز به این تأخیر کمک می کرد.

ژئوفیزیک به دلیل ویژگیهایی که دارد کم هزینه بودن و بیشترین سرعت بهترین راه برای برداشت بود اما متدهای گراویتی بدلیل دیگر مشکلات کنار گذاشته شد و روشهای قدیمی مغناطیس بدلیل وجود منبع میدان، وجود الکترود و تفسیر پیچیده کمتر استفاده شد. همین عوامل بعدها باعث توسعه روشهای ژئوفیزیکی شد، اولین تلاش برای استفاده از هواپیما در برداشت های EM توسط (1946) Hans land berg و این سیستم شامل 2 سیم پیچ که در کابین هلیکوپتر می‎باشد و تنها برای توده های مدفون در عمق 5 متری می‎باشد.

از طرفی با روی کار آمدن کامپیوتر سرعت و دقت محاسبات پیچیده این روش به عنوان سریعترین و بهترین روش بکار گرفته شد.

نیاز به کشف توده های عمیق باعث شد تا پس از دهه 1970 مطالعات و طراحی هایی در این زمینه صورت بگیرد. در این مسیر موفقیتهای (INPUT) (Induced Pulse Transient) (القا پالس زودگذر) چشمگیر بوده در دهه 1980 عمده شرکتهای معدنی بدنبال اکتشاف طلا بودند. در هر حال نیاز اورانیوم و فلزات پایه در نیمه دهه 1980 باعث شد روشهای اکتشاف عمیق استفاده شود شرکتهای Spectrem , Questem , Geotem در سال 1990 اقدام به ارائه این خدمات کردند.

فصل سوم

مبانی مغناطیس سنجی و تئوری

مقدمه:

میدان مغناطیسی زمین از دیرباز نظر محققان را به خود جلب کرده بود. همیشه این حقیقت که سوزن مغناطیسی شده آویزان از نخ همیشه در یک راستا قرار می‎گیرد دانشمندان را به فکر وامی داشت. تا اینکه ژیلبرت نظریه خود را حدود سه قرن پیش مبنی بر اینکه زمین مانند یک مغناطیس بزرگ و تا اندازه ای بی قاعده عمل می‌کند. این نظریه به همراه نظریه نیوتن در مورد گرانش را می‎توان پایه های ژئوفیزیک دانست. در واقع به کمک ژئوفیزیک می‎توان کانسار مدفون در زمین را با اطمینان مدلسازی کرد.

مطالعات ژئوفیزیکی بر مبنای خاصیت فیزیکی مورد اندازه گیری به دو دسته کلی تقسیم می‎شوند. روشهایی که میدانهای طبیعی زمین را اندازه گیری می‌کنند (روشهای استاتیک) که عبارتند از روشهای ثقل سنجی، مغناطیسی سنجی، تلوریک، پتانسیل خودزا و رادیومتری و روشهایی که از میدانهای مصنوعی ایجاد شده استفاده می‌کنند (روشهای دینامیک) که شامل دو دسته مهم می باشند. روشهای الکتریکی و روشهای لرزه نگاری، روشهای استاتیک نسبت به روشهای دینامیک سریع و کم خرج هستند و عموماً در اکتشاف نیمه تفصیلی و شناسایی ساختمانی زمین شناسی استفاده می‎شوند و بیشتر اطلاعات کیفی بدست می دهند. در روشهای دینامیکی با مطالعه تغییرات میدان مصنوعی ایجاد شده در اثر حضور مواد مختلف می‎توان آنالیزهای بهتر و مشخص تری همراه با تفسیرهای کمی و کیفی انجام داد. روشهای دینامیک اغلب وقت گیر و پرهزینه هستند ولی تجارب علمی و نتایج بدست آمده، کاربرد موفقیت آمیز این روشها را ثابت کرده است.

3-1-2- میدان مغناطیسی زمین

شکل میدان مغناطیسی در سطح زمین بطور تقریب معادل شکلی است که با قرار دادن یک آهنربا کوچک ولی پرقدرت در مرکز زمین بوجود می‎آید به شرط آنکه قطب شمال مغناطیسی این آهنربا رو به جنوب بوده و نسبت به محور چرخش زمین مایل باشد. اگر میدان کاملاً منظم بود، خطوط نیرو در قطب محور مغناطیسی قائم و در استوای مغناطیسی افقی می بود. استوای مغناطیسی دایرة عظیمه ای است که نسبت به استوای واقعی مایل است. (به شکل زیر توجه شود.)

3-1-3- مفاهیم اصلی مغناطیس

3-1-3-1- نیروی مغناطیسی

رابطه نیروی مغناطیسی از قانون کولن برای قطبهای مغناطیسی بدست آمده و نمادگذاری آن تقریباً شبیه قانون نیوتن درباره نیروی گرانی است. این رابطه بدین صورت است:

(3-1)

F نیروی وارد بر m2 بر حسب دین، r فاصلة قطبها برحسب سانتیمتر و جهت نیرو از m1 ، m2 است. قطب ها خودشان مجازیند، زیرا نمی توانند بصورت مجزا وجود داشته باشند و فقط به صورت زوج ظاهر می‎شوند. تراوایی مغناطیسی است که کمیتی بدون بعد بوده و مقدار آن در خلاء دقیقاً برابر او در هوا نیز عملاً مساوی 1 است.

اگر دو قطب m2 , m1 هر یک به شدت یک emu در خلأ (emu ، واحد قطب مغناطیسی در سیستم تcgs) در فاصله یک سانتیمتری از یکدیگر قرار گیرند. نیروی بین آنها برابر یک دین است، برخلاف حالت گرانی که در آن نیرو همیشه ربایشی است، نیروی ایستا مغناطیسی موقعی ربایشی است که علامت قطبها مخالف یکدیگر باشند و زمانی رانشی است که علامتها یکسان باشند. براساس قرارداد قطبی که به سوی قطب شمال مغناطیسی زمین جذب شود (شمالجو) قطب مثبت و قطبی که به سوی قطب جنوب مغناطیسی زمین جذب شود، قطب منفی جنوبجو است.

استفاده از ایربرن در مطالعات ژئوفیزیکی

امروزه با توجه به پیشرفت تکنولوژی و نیاز به هر چه سریع تر انجام دادن پروژه های اکتشافی بدلیل شرایط نامطلوب برداشت در فیلد، هزینه گروه اکتشاف، شرایط نامطلوب آب هوایی در فصول مختلف دلایل مهمی برای ارتقاء برداشتهای ژئوفیزیکی هستند که مکتشفان به دنبال راههایی هستند تا برداشت در زمان کمتر و با هزینه کمتر و دقت بالاتر انجام شود و در این راه در زمینه بهینه سازی پروژه های ژئوفیزیکی ایربرن (مغناطیس هوابرد) یکی از مهمترین ابزارها در دست مکتشفین و از طرفی روی کار آمدن نرم افزارهای دقیق تفسیر و تصحیح داده های مغناطیسی نیز باعث افزایش سرعت و دقت تصحیحات مختلف می شود.

2-1- مقدمه :

می‎توان در نظر گرفت که بردار میدان مغناطیسی از یک تابع پتانسیل نرده ای مشتق شده است. یعنی :

و این پتانسیل را می‎توان به صورت کار انجام شده برای حرکت یک قطب واحد در میدان مغناطیسی تعریف کرد:

پتانسیل مغناطیسی نرده ای تا اندازه ای مبهم می‎باشد زیرا قطب پتانسیلی تک، تنها یک تصور است. و در حقیقت آنچه واقعیت دارد، دو قطبی مغناطیسی است.

این واحد، اندازة مناسبی برای کارهای ژئوفیزیکی است.

2-3- مدلسازی داده های میادین پتانسیلی در حوزة فوریه: (Fourier Domain modeling) بین طول موجهای یک آنومالی میدان پتانسیلی با ابعاد، عمق و شکل تودة ایجاد کننده آنومالی روابطی وجود دارد. بطور مثال پهنای یک آنومالی ایجاد شده توسط یک دایپل، اساساً به عمق دایپل بستگی دارد. بنابراین می‎توان نتیجه گرفت که آنالیز فوریه که یک متدولوژی جهت تبدیل داده های فضای مختصاتی به صورت تابعی از عدد موج یا فرکانسها می باشد، امکان تحلیل رابطه ای بین میادین پتانسیل و منابع ایجاد کنندة آنها را فراهم می سازد. خواهیم دید که بطور مثال تبدیل فوریة آنومالیهای گراویتی یا مغناطیسی که توسط یک منبع لایه ای ایجاد شده است، باعث تجزیة آنومالی به حاصلضرب دو عامل که یکی تابعی از عمق وضخامت لایه می‎باشد بوده و دیگری تابع توزیع چگالی یا مغناطیس شدگی لایه می‎باشد، می گردد.

توزیع منبع را در این حالت می‎توان با تبدیل فوریة آنومالی با یک تابع ساده که بستگی به عمق و ضخامت توده دارد، بدست آورد. در سالهای دهة 1960 و به دنبال کار آقایان Tsuboi , Fuchida که کاربرد آنالیز فوریه در تفسیر داده های آنومالیهای مغناطیسی دریایی را ارایه دادند، با تاچاریا چندین مقالة مهم در خصوص آنالیز فوریه داده های مغناطیسی سنجی و گراویتی را انتشار داد. مهمترین نتیجه ای که او مطرح نمود آنست که اگر تکنیکهای بکار گرفته شده در تصحیح توپوگرافی از قبیل گسترش داده ها به بالا و پایین و انتقال داده ها به قطب، روابط بسیار ساده ای در حوزة فوریه هستند.

2-4- آنومالیهای سادة میادین پتانسیلی: (simple Anomalies)

با استفاده از اصول تبدیل فوریه، می‎توان تبدیل فوریة میادین پتانسیل ایجاد شده توسط تعدادی از منابع سادة زیر سطحی از قبیل دایپلها، تک قطبها، خطها و نوارها را محاسبه نمود.

این منابع ساده پایة آنومالیهای بسیار پیچیده را تشکیل می دهند. اگر r فاصلة بین نقطة p که در (x , y , z) واقع شده و نقطة که در قرار داده باشد، آنگاه تبدیل فوریة یک پایة بحث مربوط به میادین پتانسیلی است چرا که این میادین به انواع مشتقات بستگی دارد. با داشتن تبدیل فوریه و قضایای خاصیت دیفرانسیل گیری تبدیل فوریه، می توانیم انواع محاسبات را انجام دهیم. اسپکتور و باتاچاریا (1966) از یک استراتژی مشابه جهت به دست آوردن توابع چگالی انرژی طیفی و توابع خود همبستگی برای آنومالیهای دایپلی و منابع خطی بکار گرفتند. اگر p را به یک سطح افقی محدود کنیم که در ارتفاع z0 واقع شده و با فرض آنکه نقطه در موقعیت قرار گرفته باشد، بطوریکه باشد،



خرید فایل


ادامه مطلب ...

بررسی معادلات دینامیکی امواج گرانشی با رویکرد نظریه ی میدان ها در دو وضعیت گرانش جرم دار و بدون جرم

بررسی معادلات دینامیکی امواج گرانشی با رویکرد نظریه ی میدان ها در دو وضعیت گرانش جرم دار و بدون جرم

بررسی معادلات دینامیکی امواج گرانشی با رویکرد نظریه ی میدان ها در دو وضعیت گرانش جرم دار و بدون جرم

در این پژوهش معادلات دینامیکی امواج گرانشی با رویکرد نظریهی میدانها در دو وضعیت گرانش بدون جرم و جرمدار موردمطالعه قرار گرفته است. با معرفی یک میدان اسپین 2 در نظریهی میدانها و روشهای وردشگیری از خطی شدهی کنشاینشتین هیلبرت یک معادلهی دینامیکی برای امواج گرانشی بدون جرم ...


ادامه مطلب ...

بررسی جایگاه میدان های شهری در تعلق مکانی ساکنین و هویت بخشی به شهرها نمونه موردی، میدان گپ خرم آباد

بررسی جایگاه میدان های شهری در تعلق مکانی ساکنین و هویت بخشی به شهرها نمونه موردی، میدان گپ خرم آباد

بررسی جایگاه میدان های شهری در تعلق مکانی ساکنین و هویت بخشی به شهرها نمونه موردی، میدان گپ خرم آباد

بررسی و شناخت مولفه های زیبایی شناختی و هویت و نقش نمادین آن در معماری و طراحی میدان های شهری موضوع این پژوهش بودهاست. روش پژوهشی مورد استفاده در این مقاله، تحلیلی توصیفی، تاریخی بوده، روش گرد آوری داده ها بصورت مشاهده، اسناد سخت و نرم وکتابخانه ای و تحقیق میدانی بوده است. در ...


ادامه مطلب ...

ارزیابی خصوصیات پتروفیزیکی سازند آسماری با استفاده از نمودارهای چاه پیمایی در میدان نفتی اهواز

ارزیابی خصوصیات پتروفیزیکی سازند آسماری با استفاده از نمودارهای چاه پیمایی در میدان نفتی اهواز

ارزیابی خصوصیات پتروفیزیکی سازند آسماری با استفاده از نمودارهای چاه پیمایی در میدان نفتی اهواز

میدان نفتی اهواز بزرگترین میدان ماسه سنگی ایران بوده و یکی از میادین اصلی تولید نفت ایران به شمار می رود.هیدروکربن موجود در میدان اهواز بیشتر در بخش ماسه سنگی مخزن آسماری و در لایه های A3,A2,A1 می باشد. در اینمقاله، مشخصات پتروفیزیکی لایه های این مخزن در میدان اهواز با استفاده از ...


ادامه مطلب ...

ارتباط تکامل یافته بازاریابی و اجری نشان و مارکها در میدان محصولات OTC یا ( محصولات قانونی و مجاز)

ارتباط تکامل یافته بازاریابی و اجری نشان و مارکها در میدان محصولات OTC یا ( محصولات قانونی و مجاز)

ارتباط تکامل یافته بازاریابی و اجری نشان و مارکها در میدان محصولات OTC یا ( محصولات قانونی و مجاز)

ارتباط تکامل یافته بازاریابی و اجری نشان و مارکها در میدان محصولات OTC یا ( محصولات قانونی و مجاز) نام لاتین Implementation of Integrated Marketing Communication on Market Performance of Brands in the Field of OTC Products سال 2011 فرمت فایل ترجمه: Word تعداد صفحه: 14 مقاله دارای مدل تحقیق (مدل پژوهش) است ...


ادامه مطلب ...

شرح کلی فرآیند پالایشگاه گاز ( بر اساس میدان گازی پارس جنوبی )

شرح کلی فرآیند پالایشگاه گاز ( بر اساس میدان گازی پارس جنوبی )

شرح کلی فرآیند پالایشگاه گاز ( بر اساس میدان گازی پارس جنوبی ) از توضیحات اولیه تا فرآوری و صادرات ٰ طراحی ؛ مقدمه ؛ شبیه سازی و ... در 58 صفحه pdf به صورت کتاب ...


ادامه مطلب ...

تعیین لبه داده های میدان پتانسیل با استفاده از روش تانسور ساختار

تعیین لبه داده های میدان پتانسیل با استفاده از روش تانسور ساختار

تعیین لبه داده های میدان پتانسیل با استفاده از روش تانسور ساختار

تعیین لبه یکی از روش های مورد نیاز در تفسیر داده میدان پتانسیل می باشد. روشهاس زیادی بر پایه مشتق های عمودی و افقی داده میدان پتانسیل جهت آشکار کردن لبه وجود دارد. مقادیر ویژه بزرگ از تانسور ساختار می توانند لبهی ساختارهای زمین شناختی را مشخص نمایند، اما حدود مرزهای ساختارهای ...


ادامه مطلب ...