فهرست :
چکیده
مقدمه
داده کاوی
تکنیک های داده کاوی
دسته بندی
رگرسیون گیری
خوشه بندی
تجمع و همبستگی
درخت تصمیم گیری
ویزگی های درخت تصمیم
الگوریتم ژنتیک
شبکه های عصبی مصنوعی
ساختار شبکه عصبی
نورون
معماری شبکه عصبی
شبکه های پیش خور تک لایه
انواع یادگیری در شبکه های عصبی مصنوعی
داده کاوی در پزشکی
داده کاوی در سلامت
نرم افزار های داده کاوی
نتیجه گیری
مراجع
خرید و دانلود محصول1395/04/15
1395/04/14
1395/02/26
1394/12/20
1394/09/16
1395/04/13
1394/10/01
شرح مختصر : با افزایش چشمگیر حجم اطلاعات و توسعه وب، نیاز به روش ها و تکنیک هایی که بتوانند امکان دستیابی کارا به دادهها و استخراج اطلاعات از آنها را فراهم کنند، بیش از پیش احساس می شود. وب کاوی یکی از زمینه های تحقیقاتی است که با به کارگیری تکنیک های داده کاوی به کشف و استخراج خودکار اطلاعات از اسناد و سرویسهای وب می پردازد. در واقع وب کاوی، فرآیند کشف اطلاعات و دانش ناشناخته و مفید از داده های وب می باشد. روش های وب کاوی بر اساس آن که چه نوع داده ای را مورد کاوش قرار می دهند، به سه دسته کاوش محتوای وب، کاوش ساختار وب و کاوش استفاده از وب تقسیم می شوند. طی این گزارش پس از معرفی وب کاوی و بررسی مراحل آن، ارتباط وب کاوی با سایر زمینه های تحقیقاتی بررسی شده و به چالش ها، مشکلات و کاربردهای این زمینه تحقیقاتی اشاره می شود. همچنین هر یک از انواع وب کاوی به تفصیل مورد بررسی قرار می گیرند که در این پروژه بیشتر به وب کاوی در صنعت می پردازم. برای این منظور مدل ها، الگوریتم ها و کاربردهای هر طبقه معرفی می شوند.
فهرست :
مقدمه
فصل دوم: داده کاوی
مقدمه ای بر داده کاوی
چه چیزی سبب پیدایش داده کاوی شده است؟
مراحل کشف دانش
جایگاه داده کاوی در میان علوم مختلف
داده کاوی چه کارهایی نمی تواند انجام دهد؟
داده کاوی و انبار داده ها
داده کاوی و OLAP
کاربرد یادگیری ماشین و آمار در داده کاوی
توصیف داده ها در داده کاوی
خلاصه سازی و به تصویر در آوردن داده ها
خوشه بندی
تحلیل لینک
مدل های پیش بینی داده ها
دسته بندی
رگرسیون
سری های زمانی
مدل ها و الگوریتم های داده کاوی
شبکه های عصبی
درخت تصمیم
Multivariate Adaptive Regression Splines(MARS)
Rule induction
Knearest neibour and memorybased reansoning(MBR)
رگرسیون منطقی
تحلیل تفکیکی
مدل افزودنی کلی (GAM)
Boosting
سلسله مراتب انتخابها
داده کاوی و مدیریت بهینه وب سایت ها
دادهکاوی و مدیریت دانش
فصل سوم: وب کاوی
تعریف وب کاوی
مراحل وب کاوی
وب کاوی و زمینه های تحقیقاتی مرتبط
وب کاوی و داده کاوی
وب کاوی و بازیابی اطلاعات
وب کاوی و استخراج اطلاعات
وب کاوی و یادگیری ماشین
انواع وب کاوی
چالش های وب کاوی
مشکلات ومحدودیت های وب کاوی در سایت های فارسی زبان
محتوا کاوی وب
فصل چهارم: وب کاوی در صنعت
انواع وب کاوی در صنعت
وب کاوی در صنعت نفت، گاز و پتروشیمی
مهندسی مخازن/ اکتشاف
مهندسی بهره برداری
مهندسی حفاری
بخشهای مدیریتی
کاربرد های دانش داده کاوی در صنعت بیمه
کاربردهای دانش داده کاوی در مدیریت شهری
کاربردهای داده کاوی در صنعت بانکداری
بخش بندی مشتریان
پژوهش های کاربردی
نتیجه گیری
منابع و ماخذ فارسی
مراجع و ماخذ لاتین و سایتهای اینترنتی
خرید و دانلود محصول1394/10/04
تا به امروز نرم افزارهای تجاری و آموزشی فراوانی برای داده کاوی در حوزه های مختلف داده ها به دنیای علم و فناوری عرضه شده اند. هریک از آنها با توجه به نوع اصلی داده هایی که مورد کاوش قرار میدهند، روی الگوریتمهای خاصی متمرکز شده اند. مقایسه دقیق و علمی این ابزارها باید از جنبه های متفاوت و متعددی مانند تنوع انواع و فرمت داده های ورودی، حجم ممکن برای پردازش داده ها، الگـوریتمهای پیاده سـازی شده، روشهای ارزیابی نتایج، روشهای مصـور سـازی، روشهای پیش پردازش داده ها، واسطهای کاربر پسند، پلتفرمهای سازگار برای اجرا،قیمت و در دسترس بودن نرم افزار صورت گیرد. از آن میان، نرم افزار Weka با داشتن امکانات بسیار گسترده،امکان مقایسه خروجی روشهای مختلف با هم، راهنمای خوب، واسط گرافیگی کارا، سازگاری با سایر برنامه های ویندوزی، و از همه مهمتر وجود کتابی بسیار جامع و مرتبط با آن [Data Mining, witten et Al. 2005 ] ، معرفی میشود.
1- معرفی نرم افزار Weka
میزکارWeka ، مجموعهای از الگوریتمهای روز یادگیری ماشینی و ابزارهای پیش پردازش دادهها میباشد. این نرمافزار به گونهای طراحی شده است که میتوان به سرعت، روشهای موجود را به صورت انعطافپذیری روی مجموعههای جدید داده، آزمایش نمود. این نرمافزار، پشتیبانیهای ارزشمندی را برای کل فرآیند داده کاوی های تجربی فراهم میکند. این پشتیبانیها، آماده سازی دادههای ورودی، ارزیابی آماری چارچوبهای یادگیری و نمایش گرافیکی دادههای ورودی و نتایج یادگیری را در بر میگیرند. همچنین، هماهنگ با دامنه وسیع الگوریتمهای یادگیری، این نرمافزار شامل ابزارهای متنوع پیش پردازش دادههاست. این جعبه ابزار متنوع و جامع، از طریق یک واسط متداول در دسترس است، به نحوی که کاربر میتواند روشهای متفاوت را در آن با یکدیگر مقایسه کند و روشهایی را که برای مسایل مدنظر مناسبتر هستند، تشخیص دهد.
این سیستم به زبان جاوا نوشته شده و بر اساس لیسانس عمومی و فراگیر GNU انتشار یافته است.Weka تقریباً روی هر پلت فرمی اجرا میشود و نیز تحت سیستم عاملهای لینوکس، ویندوز، و مکینتاش، و حتی روی یک منشی دیجیتالی شخصی، آزمایش شده است.
این نرم افزار، یک واسط همگون برای بسیاری از الگوریتمهای یادگیری متفاوت، فراهم کرده است که از طریق آن روشهای پیش پردازش، پس از پردازش و ارزیابی نتایج طرح های یادگیری روی همه مجموعه های داده موجود، قابل اعمال است.
نرم افزار Weka ، پیاده سازی الگوریتمهای مختلف یادگیری را فراهم میکند و به آسانی میتوان آنها را به مجموعه های داده خود اعمال کرد.
همچنین، این نرم افزار شامل مجموعه متنوعی از ابزارهای تبدیل مجموعههای داده ها، همانند الگوریتمهای گسسته سازی میباشد. در این محیط میتوان یک مجموعه داده را پیش پردازش کرد، آن را به یک طرح یادگیری وارد نمود، و دستهبندی حاصله و کارآییاش را مورد تحلیل قرار داد.( همه این کارها، بدون نیاز به نوشتن هیچ قطعه برنامهای میسر است.)
این محیط، شامل روشهایی برای همه مسایل استاندارد داده کاوی مانند رگرسیون، ردهبندی، خوشهبندی، کاوش قواعد انجمنی و انتخاب ویژگی میباشد. با در نظر گرفتن اینکه، دادهها بخش مکمل کار هستند، بسیاری از ابزارهای پیش پردازش دادهها و مصورسازی آنها فراهم گشته است. همه الگوریتم ها، ورودیهای خود را به صورت یک جدول رابطهای به فرمت ARFF دریافت میکنند. این فرمت دادهها، میتواند از یک فایل خوانده شده یا به وسیله یک درخواست از پایگاه دادهای تولید گردد.
یکی از راههای به کارگیری Weka ، اعمال یک روش یادگیری به یک مجموعه داده و تحلیل خروجی آن برای شناخت چیزهای بیشتری راجع به آن اطلاعات میباشد. راه دیگر استفاده از مدل یادگیری شده برای تولید پیشبینیهایی در مورد نمونههای جدید است. سومین راه، اعمال یادگیرندههای مختلف و مقایسه کارآیی آنها به منظور انتخاب یکی از آنها برای تخمین میباشد. روشهای یادگیری Classifier نامیده میشوند و در واسط تعاملی Weka ، میتوان هر یک از آنها را از منو انتخاب نمود. بسیاری از classifier ها پارامترهای قابل تنظیم دارند که میتوان از طریق صفحه ویژگیها یا object editor به آنها دسترسی داشت. یک واحد ارزیابی مشترک، برای اندازهگیری کارآیی همه classifier به کار میرود.
پیاده سازیهای چارچوبهای یادگیری واقعی، منابع بسیار ارزشمندی هستند که Weka فراهم می کند. ابزارهایی که برای پیش پردازش دادهها استفاده میشوند Filter نامیده میشوند. همانند classifier ها، میتوان filter ها را از منوی مربوطه انتخاب کرده و آنها را با نیازمندیهای خود، سازگار نمود. در ادامه، به روش به کارگیری فیلترها اشاره میشود.
علاوه بر موارد فوق، Weka شامل پیاده سازی الگوریتمهایی برای یادگیری قواعد انجمنی، خوشهبندی دادهها در جایی که هیچ دستهای تعریف نشده است، و انتخاب ویژگیهای مرتبط در دادهها میباشد.
تعداد صفحات :80
فرمت فایل : Word
1395/03/20
فرمت فایل: word ( قابل ویرایش)
تعداد صفحات: 78
چکیده و فهرست مطالب پایان نامه داده کاوی و نقش آن در سازمان های هوشمند را در قسمت پایین می توانید مشاهده کنید.
سازمانها ، نهاد ها و شرکت ها برای انجام امور محوله و کسب موفقیت در سطح ملی و بین المللی باید هوشمند باشند که این امر با درک و آگاهی از منابع و سایر موارد داخل و خارج آن سازمان یا نهاد میسر خواهد شد . میزان درک و آگاهی به دارا بودن دانش محیط آن سازمان و نحوه مدیریت کردن آن وابسته است.
ازنکات قابل توجه و مهم در زمینه مدیریت و مهندسی دانش، تولید و استخراج دانش ، استفاده از دانش، به اشتراک گذاشتن دانش و حفظ یکپارچگی و صحت آن می باشد.
داده کاوی یکی از پیشرفتهای اخیر در حوزه کامپیوتر برای اکتشاف عمیق داده هاست. داده کاوی از اطلاعات پنهانی که برای برنامه ریزیهای استراتژیک و طولانی مدت میتواند حیاتی باشد پرده برداری میکند.
در این مطلب؛ با ارائه مفهوم داده کاوی جهت تولید و استخراج دانش به عنوان یک گام مهم در مدیریت دانش و انبار آن، تکنیکهای مختلف آن مورد ارزیابی قرار گرفته است ونیزفرآیند کشف دانش از پایگاه داده، همراه با مراحل آن، بررسی شده است و سپس نگاهی هم به تکنیکهای دادهکاوی و ارتباط داده کاوی با مدیریت دانش میاندازیم.
1-سازمان هوشمند
2-سازمان های هوشمند و وضعیت موجود
3-مدیریت دانش در سازمان ها (بررسی تاثیر متقابل فناوری، فنون و انسان)
4-ماهیت دانش سازمانی
5-یادگیری دانش و سازمان های یادگیرنده
6-تعریف خلاقیت از نگاه سازمانی
7-ویژگی های سازمان خلاق
فصل دوم: بررسی روند پردازش داده و ارزیابی تکنیک ها و ابزارهای داده کاوی
1-درباره داده ها...
2-پیشرفت در تکنولوژی های پردازش داده
3-دیتا مارت
4-انبار داده ها
4-1-مشخصات یک انباره داده
4-2-انبار داده ها و داده کاوی
4-3-سیستم های انبار داده ها
4-4-انبار داده های مجازی
4-5-معماری دو لایه در انبار داده ها
5-فرایند کشف دانش از پایگاه داد
5-1- استخراج داده ها
5-2- آماده کردن داده ها
5-3-مهندسی داده ها
5-4- مهندسی الگوریتم و تعیین استراتژی های کاوش
5-5-اجرای الگوریتم کاوش و ارزیابی نتایج
6-سابقه داده کاوی
7-مفهوم داده کاوی
8-ضرورت داده کاوی
9-داده کاوی در مقابل پایگاه داده
10-زبان های پرسشی داده کاوی
11-فنون داده کاوی
12-محدودیت های داده کاوی
13-عناصر داده کاوی
14-قابلیتهای ابزارها و تکنیکهای داده کاوی
14-1-هم پیوندی
14-2-طبقه بندی
14-3-الگوریتم های ترتیبی
14-4-خوشه بندی
14-5-Regression
14-6-Time series
15-ابزارهای تجاری داده کاوی
16-نرم افزارهای داده کاوی
17-فرایند داده کاوی
18-داده کاوی و مدیریت دانش
فصل سوم: فرایند مدیریت دانش
1-درباره مدیریت دانش...
2-زنجیره اطلاعات
2-1-داده
2-2-اطلاعات
2-3-دانش
2-4-معرفت
3-فرآیند مدیریت دانش
3-1-ایجاد دانش
3-2-اعتباربخشی به دانش
3-3-رائه دانش
3-4-توزیع دانش
3-5-کاربرد دانش
4-چهار عنصر اساسی مدیریت دانش
5-مدیریت دانش از دیدگاه یک استراتژی سازمان تجاری
فصل چهارم: نقش داده کاوی در سازمان های هوشمند
1-داده کاوی و نقش آن در سازمان های هوشمند
2-مدل مفهومی برای کارائی مدیریت دانش
2-1-ارتقای دانش از طریق ابزارهای فنی
2-1-1تکنولوژی اطلاعات
2-1-سیستمهای حمایت از تصمیمات استراتژیک
2-2-دانش کسب شده به وسیله عوامل هوشمند
-خلاصه و نتیجه گیری
-پی نوشتها
-مراجع
-پیوست: صورت کلی چند الگوریتم داده کاوی
هم اکنون می توانید پایان نامه داده کاوی و نقش آن در سازمان های هوشمند را به قیمت 8700 تومان از سایت آسمان فایل دانلود نمایید.
1395/02/23