در این مقاله فرایند تعیین ضرایب ماتریس نرمی برای ترک اریب درزاویهی دلخواه ارائه میشود تشریح میشود سپسبر اساس فرآیند تشریح شده، ضرایب ماتریس نرمی محاسبه میشوند. این ضرایب بر اساس مفاهیم مکانیک شکست و با بکارگیری تابع چگالی انرژی کرنشی بدست میآیند. جهت تعیین تابع چگالی انرژی ...
1395/03/04
مقدمه:
مجموعه عملیات و روش هایی که برای کاهش عیوب و افزایش کیفیت ظاهری تصویر مورد استفاده قرار می گیرد، پردازش تصویر نامیده می شود.حوزه های مختلف پردازش تصویر را می توان شامل بهبود تصاویر مختلف پزشکی مانند آشکار سازی تومور های مغز یا پهنای رگ های خونی و ... ، افزایش کیفیت تصاویر حاصل از ادوات نمایشی مانند تصاویر تلویزیونی و ویدیویی، ارتقا متون و شکل های مخابره شده در رسانه های مختلف مانند شبکه و فاکس و همچنین بهبود کیفیت روش های کنترل توسط بینایی ماشین و درک واقعی تر مناظر توسط ربات ها دانست.
اگرچه حوزه ی کار با تصاویر بسیار گسترده است ولی عموما محدوده ی مورد توجه در چهار زمینه ی بهبود کیفیت ، بازسازی تصاویر مختل شده، فشرده سازی تصویر و درک تصویر توسط ماشین متمرکز می گردد. در اینجا سه تکنیک اول بررسی خواهد شد.
از آنجایی که برای کار روی تصاویر با پیکسل ها سروکار داریم و هر پیکسل نشان دهنده ی یک عنصر از یک آرایه ی دوبعدی است، کار روی تصاویر همواره با کار روی ماتریس ها عجین شده است. ماتریس اسپارس یا ماتریس خلوت ، ماتریسی است که درایه های صفر آن زیاد باشد و در نتیجه ذخیره ی عناصر صفر مقرون به صرفه نیست و همواره سعی در کاهش ذخیره ی این عناصر است تا بتوان عملیات ماتریسی را سریع تر انجام داد. در کار با تصویر با اینگونه ماتریس ها زیاد برخورد می کنیم . در این پروژه ابتدا تکنیک ها و روش های مختلف پردازش تصویر را معرفی می کنیم. در بخش بعد الگوریتم های موازی را شرح می دهیم که در GPU کاربرد دارند و با معماری موازی آشنا می گردیم. در بخش سوم برخی از الگوریتم های مربوط به ماتریس خلوت را مورد بررسی قرار می دهیم و در نهایت در بخش چهارم کاربرد این ماتریس ها را در پردازش تصویر معرفی خواهیم نمود.
و در آخر، پیاده سازی یکی از ا لگوریتم های مبحث فشرده سازی را روی تصاویر باینری، انجام خواهیم داد و با یکی از الگوریتم های فشرده سازی مربوط به تصاویر باینری به نام Run length coding مقایسه خواهیم نمود.
1395/04/12
در حوزهٔ هوش مصنوعی، ماتریس در هم ریختگی (به انگلیسی: confusion matrix) به ماتریسی گفته میشود که در آن عملکرد الگوریتمهای مربوطه را نشان میدهند. معمولاً چنین نمایشی برای الگوریتمهای یادگیری با ناظر استفاده میشود، اگرچه در یادگیری بدون ناظر نیز کاربرد دارد. معمولاً به کاربرد این ماتریس در الگوریتمهای بدون ناظر ماتریس تطابق می گویند. هر ستون از ماتریس، نمونهای از مقدار پیش بینی شده را نشان میدهد. در صورتی که هر سطر نمونهای واقعی (درست) را در بر دارد. اسم این ماتریس نیز از آنجا بدست میآید که امکان این را آسانتر اشتباه و تداخل بین نتایج را مشاهده کرد. در خارج از هوش مصنوعی این ماتریس معمولاً ماتریس پیشایندی (contingency matrix) یا ماتریس خطا (error matrix) نامیده میشود.
پروژه ماتریس در هم ریختگی با نرم افزارMATLAB کدنویسی و ساخته شده است.این پروژه بدون نقص و به صورت کامل اجرا می شود که می تواند برای دانشجویان و متخصصین بسیار مفید باشد.این پروژه با قیمت بسیار بالاتری در سطح نت به فروش می رسد اما ما به علت عدم کار با واسطه موفق شدیم تا آن را با این قیمت عرضه نماییم.
خرید و دانلود محصول1395/02/22
-
1394/03/311394/08/23
1394/11/15
1394/11/15