دانلود انواع فایل

مقاله تحقیق پروژه دانش آموزی و دانشجویی

دانلود انواع فایل

مقاله تحقیق پروژه دانش آموزی و دانشجویی

پاورپوینت نگاهی بر کاربرد برج های تقطیر در پالایشگاه خانگیران سرخس (نوع سینی ومحاسبات اقتصادی برج)

پاورپوینت نگاهی بر کاربرد برج های تقطیر در پالایشگاه خانگیران سرخس (نوع سینی ومحاسبات اقتصادی برج)



عملیات تقطیر
مقدمه :

مایعــات گازی عبارتند از مواد سبک و سنگین هیدروکربوری که همراه گاز از چاههـــای گازخارج می کردند . این مواد با توجه به میزان تولید و شرایط چاههای گاز و میزان برداشت از چاههای گاز متفاوت می باشند . مایعات گازی قابلیت تبدیل به مواد سبک تقطیر و میان تقطیر را دارا بوده و قبلاً این مایعات در این پالایشگاه به عنوان سوخت دوم دیگهای بخار استفاده می شد و مقداری نیز به چاله های آتش هدایت می گردید و در دیگر مناطق با توجه به شرایط جغرافیایی منطقه تثبیت و یا صادر می گردید . این مایعات با پالایش مناسب می توانند ارزش افزوده مناسبی را به دست آورند و در بازارهای جهانی طرفداران زیادی دارد . مایعات گازی نسبت به نفت خام دارای درصد بالایی از مواد سبک و میان تقطیر است و همچنین دارای مواد سنگین کمتری نسبت به نفت می باشد . این مایعات را می توان به راحتی با سیستم فرآورش تقطیر تبدیل به فرآورده های با ارزشی مانند حلال (Solvent) بنزین خام یا نفتا (Naphtha) نفت سفید (Kerosene) و گازوئیل (Diesel) نمود . در راستای رسیدن به این هدف طراحی و ساخت واحدهای تقطیر مایعات نفتی از سال 1373 شروع شد .


سیستم پالایش واحدهای تقطیر

واحدهای تقطیر به صورت دو ردیف موازی ساختــه شده اند و هر یک از واحدها دارای 1150 بشکه ( 183 متر مکعـب در روز ) در روز ظرفیــت پالایشی بوده و دارای تجهیزات زیر می باشد :

.1برج اصلی تقطیر با 31 سینی به طول 29،1 متر و قطر 1219 و 914 میلیمتر .2مبدلهای خنک کننده هوایی .3برج تثبیت نفتا به طول 6،71 متر و قطر 610 میلیمتر .4برج تثبیت نفت سفید به طول 11،67 متر و قطر 460 میلیمتر .5سیستم مبدلهای خنک کننده آبی جهت خنک کردن محصولات .6کوره اصلی .7دستگاه جوشاننده .8سیستم های کنترلی و سایر امکانات جانبی ●


شرح فرآیند1

.1مایعـات گازی پس از تثبیـت در تانک های خوراک به وسیله پمپ های P-310A,B&C به طرف واحد پمپ می گردند . این مایعـــات پس از عبور از کنتــــرل ولو FV-301 وارد سینی ششم برج تقطیر می گردد . مقـدار جریان مایعـات را می توانیــم به وسیلــه FV-301 کنترل نماییم . پس از وارد شدن مایعات به سینی ششم به دلیل دمــای بالای این سینی بخارات ایجاد شده در این ناحیه به سمت بالا و سینی هفتم حرکت می کنند و در روی سینی هفتم و دیـگر سینی ها با مایعاتی که به سمت پاییــن جریان دارند تمـاس پیدا می کنند و در نتیجه ترکیبات دارای نقطه جوش بالا در بخار میعاـن یافته و مایـــع می شوند و ترکیبات دارای نقطـــه جوش پاییــــن در مایـــع نیز بخـــار می شونـد و به بالا حرکت می کننــد و این عمــل روی همه سینی ها تکـــرار می شود . قسمتـــــی از مایعاتی کــــه روی سینی دهـــم جمــع می شونـد از طریـــق یک لاین خــارج و به برج V-304 ( KEROSENE STRIPPER) وارد می شونــد . کنتــرل سطـح مایع برج بوسیله LV-305 که در ورودی برج نصب شده کنترل می گردد .


شرح فرآیند2

به وسیله پمپ های P-303A/B بخشی از مایعات برج وارد مبدل E-305 شده و تا حدود 35 درجه سانتیگراد خنک می گردد و سپس بعد از کنترل کننده جریان FV-308 به طرف مخازن فرستاده می شود و مابقی مایعات وارد مبدل E-304 شده و با دیزل داغ تبادل حرارت داده می شود تا بدین طریق دمای برج V-304 در حد نرمال نگه داری شود و مقدار FLASH POINT نفت نیز به حد استاندارد برسد. برای رسیدن به دمای مطلوب V-304 می توانیم از کنترل کننده جریان دیزل عبوری از مبدل E-304 که توسط TV-317 کنترل می شود استفاده نماییم . بخارات و هیدروکربنهای سبک که در برج V-304 آزاد شده اند ، از بالای برج خارج شده و از طریق سینی سیزدهم وارد برج V-301 می شـود و با بخــارات این سینــی مخلوط شــده و به طرف بالا می رود . از سینی بیست و چهارم نیز نفتا خارج می شود و توسط یک لاین به برج سرج درام نفتا (NAPHTHA SURGE DRUM) وارد می شود . مقدار سطح مایع این برج به وسیله کنترل ولو LV-304 که در ورودی برج نصب شده است کنترل می گردد .

شرح فرآیند3

شرح فرآیند4

شرح فرآیند5


هدف واحد تقطیر مایعات گاز

.1جلوگیری از سوزاندن مایعات گازی منطقه

.2تبدیل مایعات گازی منطقه به محصولات با ارزش افزوده

.3کاهش آلودگی محیط زیست و جلوگیری از اتلاف انرژیی


قسمتهای اصلی واحد تقطیر

.1برج تقطیر

.2کوره

H-301 .3کولر هوایی E-301 و مبدلهای آبی

.4 STRIPPER نفت سفید

.5پمپها

.6سیستم تزریق کاستیک ●




خرید فایل


ادامه مطلب ...

بررسی کاربرد مبردها

بررسی کاربرد مبردها


- مقدمه Introduction

با توجه به آنچه که در گزارش اول ، اسفند 1381 ( بررسی و چگونگی تعویض مبرد R-22 در چیلرهای مجتمع پتروشیمی اصفهان) به آن اشاره شد و پروژه‏های انجام شده در خصوص‏تعویضCFC ها در این مجتمع، PROPOSAL حذف برای مبردهای R-11 ، R-13 ، R-502 و R-12 صادر شده است و در طی سال گذشته و جاری دستگاههای سبک مجتمـع که با R-12 کار می‏کردند ، در زمـان تعمیرات و در واحد تهویه گاز آنها با مبرد R-134a با موفقیت تعویض شد که در این زمینه می‏توان به دو دستگاه آبسرد کن و دو دستگاه فریزر اشاره نمود.

واحد تهویه امیدوار است بتواند با انجام پروژه تعویض HCFC R-22 که برای اولین بار در کشور در این مجتمع انجام میگیرد ، رسالت خود را در خصوص تعهدات زیست محیطی و پروتکل مونترال تکمیل نموده و بدین ترتیب در کارنامة خود در خصوص RETROFIT تجربه جدید ( تعویض HCFC ها ) را به دستاوردهای خود اضافه نماید.

البته با توجه به تماس‏ها و مکاتباتی که از طریق اینترنت بعمل آمده است، از مبرد R-507 بجای فرئون R-22 فقط در دستگاههای سرد کننده‏ای که دمای آنها زیر صفر است (LOW AND MEDIUM TEMPERATURE) استفاده میشود و این مسئله هم اخیراً و آنهم بصورت یک پروژة تحقیقاتی که از طرف ASHRAE هزینه شده است ، عنوان گردیده و در واقع استفاده از R-507 بجای R-22 در سیستمهای سرد کننده با دمای بالای صفر (HIGH TEMPERATURE) و آنهم به کمک BRINE ( ضد یخ – اتیلن گلایکول ) برای اولین بار در این مجتمع صورت میگیرد که در صورت موفقیت علاوه بر تعویض HCFC ، مسئله بهینه‏سازی در مصرف انرژی نیز مدنظر قرار خواهد گرفت.

نکته : استفاده از گلایکول اتیلن و پائین آوردن دمای آب چیلر از 8°C به 1°C ، از سیستم میتوان بعنوان ICE CHILLER STORAGE بهره برد. ( باید در نظر داشت که مکانیزمها و سیستمهای بکار برده شده از نظر دما و فشار محدودیتی نداشته باشند )

استفاده از دستگاههای ICE STORAGE در طراحیهای جدید و آتی با دمای (1°C) 36°F علاوه بر بهینه کردن مصرف انرژی ، هزینه‏های لوله‏کشی ، داکت و کانال کشی ، پمپها و وسایل برقی را بدلیل کوچک شدن سایزشان کاهش داد.

2- مبردها Refrigerants

مبرد ماده‏ایست که با جذب حرارت از یک ماده و یا یک محیط و انتقال آن به محیط دیگر بصورت عامل خنک کننده عمل می‏کند. در یک سیکل تراکمی تبخیری ، ماده مبرد با تبخیر و تقطیر تناوبی ، به ترتیب حرارت را در اواپریتور جذب و در کاندنسر دفع مینماید.

مبرد میبایستی دارای خواص شیمیائی ، فیزیکی و ترمودینامیکی ویژه‏ای باشد که استفاده از آن مطمئن و از نظر اقتصادی به صرفه باشد.

البته مبردی وجود ندارد که برای همه کاربردها مناسب باشد ، بهمین دلیل میبایستی در انتخاب یک مبرد شرایطی را در نظر گرفت که بتواند نیازهای یک کاربرد بخصوص را تأمین نماید.

3- مبردهای جایگزین و معیارهای انتخاب

Retrofit Refrigerants & The Guide Lines Of Choise


با شرایط خاصی که در سالهای اخیر برای کرة زمین ایجاد شده است ومسئله صدمه دیدن لایة اوزن ، سازمانهای بین‏المللی استفاده از HCFC ها را نیز همانند CFCها محدود و برای حذف (PHASE OUT) کردن آنها برنامه زمان بندی شده‏ای را در نظر گرفته‏اند و شرکتهای تولید کنندة اینگونه مواد سعی بر این دارند که جایگزینهای مناسبی را تولید و در دسترس مشتریها و مصرف کننده‏ها قرار دهند.

البته همانگونه که در گزارش اول به آن اشاره شده است واحد تهویه در نظر دارد که مسئله بهینه سازی انرژی را در زمان تعویض و انتخاب مبرد جایگزین ، مد نظر قرار داده تا بدین ترتیب در کاهش مصرف سوختهای فسیلی قدم مؤثری برداشته باشد. در نتیجه نسبت به تعویضهای گذشته میتوان اصل ششم یعنی ارزیابی انرژی مصرفی را به پنج اصل گذشته اضافه نمود.

الف ) عملکرد Performance

ب) ایمنی Safety

ج) اطمینان Reliability

د) ملاحظات زیست محیطی Environmental Consideration

هـ) ملاحظات اقتصادی Economic Consideration

و) مصرف انرژی Power Consumption

3-1- عملکرد Performance


7- محاسبات سیستم سرد کننده ساختمان سایت آفیس در شرایط موجود با گاز R-22

7-1- محاسبات ترمودینامیکی سیکل با مبرد R-22 ( سیکل ایده‏آل)

سیکل مبرد R-22 را میتوان در نمودار فشار – انتالپی (p-h) مطابق شکل زیر نمایش داد. سیکل ، ایده‏آل بوده و راندمان کمپرسور و افت فشار در لوله‏ها در نظر گرفته نشده است. مقادیر فشار و دما در نقاط مختلف سیکل براساس استاندارد تبرید تراکمی صورت میگیرد. (مخصوص چیلرها)

فرآیندهای مختلف در این سیکل عبارتند از :

فرآیند 1-2 : تراکم بخار مبرد در کمپرسور که در شرایط ایده‏آل و بصورت آیزونتروپیک است.

فرآیند 2-3 : کاهش دمای مبرد در تحول فشار ثابت ( در لوله دیسچارج و کاندنسر)

فرآیند 3-4 : تقطیر یا کاندنس کامل مبرد در یک تحول فشار و دما ثابت

فرآیند 4-5 : تحـول خفقان یا انتالپی ثابت که در وسیله انبساطی صورت می‏گیـرد (اکسپنشن ولو )

فرآیند 5-6 : تحول تبخیر در اواپریتور (CHILLER) که بصورت دما و فشار ثابت انجام می‏گیرد.

فرآیند 6-1 : ناحیه‏سوپرهیت است که در واقع‏برای‏جلوگیری از صدمه‏رسیدن به کمپرسور ، بخار اشباع در اواپریتور را قبل از ورود به کمپرسور کمی گرم می‏کنند تا بصورت بخار داغ (SUPERHEAT) وارد کمپرسور شود.

در محاسبة سیکل تبرید مورد نظر با مبرد R-22 و بصورت ایده‏آل از داده‏های موجود در مرکز اسناد و کاتالوگ شرکت سازنده چیلر (CLIMAVENTA) استفاده شده است. البته لازم به ذکر است که بار حرارتی کاندنسر در محاسبات انجام شده براساس اختلاف دمای 6 درجه (INLET 29°C , OUTLET 35°C) صورت گرفته است درصورتیکه طبق LOG SHEETهای پیوست اختلاف دمای آب ورودی و خروجی کاندنسر چیزی در حدود 10 درجه است که این مسئله باعث افزایش ظرفیت کاندنسر خواهد شد. ( مشخصات فنی و داده‏های سیستم در پایان گزارش پیوست میباشد )

7-2- جزئیات محاسبات سیکل تبرید R-22 ( سیکل واقعی )

از آنجائی که جریان سیال در دو مبدل کاندنسر و اواپریتور دو فازی ( اشباع SATURATION ) میباشد ، افت فشار ناچیزی ایجاد می شود که تأثیر آن در محاسبات قابل اغماض و ناچیز است. همچنین افت فشار لوله‏های رابط نیز در موازنة حرارتی سیکل قابل چشم‏پوشی است.

و تنها عامل مهم در محاسبات سیکل بصورت واقعی ، راندمان ((ηC کمپرسور است.، که میبایستی در نظر گرفته شود.

البته راندمان کمپرسورهای سیلندر پیستونی فرئونی که توسط خود شرکتهای سازنده ارائه میگردد ، چیزی در حدود 70 تا 80 درصد است. لذا به منظور دقت در محاسبات و آنهم برای تعویض R-507 مقدار راندمان 75 درصد در نظر گرفته شده است.

راندمان یک کمپرسور سیلندر پیستونی رابطة مستقیمی با نسبت تراکم آن دارد.

البته با توجه به تمامی LOG SHEET های پیوست در این گزارش که توسط افراد گروه تهویه و در تابستان سال جاری و در شرایط مختلف تکمیل شده است راندمان کمپرسور چیلر مورد نظر بالای 75 درصد است.

8- محاسبات سیستم سردکنندة ساختمان سایت آفیس با R-507

8-1- محاسبات ترمودینامیکی سیکل با مبرد R-507 ( سیکل ایده‏آل )

براساس گزارشات و مقالاتی که از طریق اینترنت دریافت شده است ، درصورت جایگزین کردن R-507 ، فشار دیسچارج کمپرسور در حدود (3.4 BARG ) +50 PSIG نسبت به R-22 افزایش خواهد داشت و بر عکس دمای دیسچارج کمتر خواهد شد.

لذا محاسبات ترمودینامیکـی سیکل با مبرد R-507 براساس داده‏های شرکت سازنده چیلر ( دمای اواپریتور 0°C و 10°C سوپر هیت گاز ورودی کمپرسور ) و با لحاظ کردن افزایش +50 PSIG به فشار خروجی کمپرسور انجام گرفته است.



خرید فایل


ادامه مطلب ...

بررسی کاربرد فلز سرب

بررسی کاربرد فلز سرب


سرب در حدود 6 تا 7 هزار سال پیش در مصر و بین النهرین کشف شده است. این فلز در شمار قدیمی ترین فلزهایی است که انسان آن را بکار برده است. به این فلز در زبان انگلیسی Lead در عربی رصاص و در زبان پهلوی سرب گفته می شود. در حدود 4000 سال پیش از میلاد مصری ها و سومری ها از سفید سرب برای آرایش استفاده می کردند. در قرون وسطی از سرب به گستردگی در مصالح ساختمانی استفاده می شده است. در ایران نیز سرب از اواخر هزاره سوم شناخته شده و چون ذوب کربنات های سرب آسان بوده است، معادن کربنات سرب زودتر مورد استفاده قرار گرفته اند.

در حال حاضر مهمترین کاربردهای آن در باطری ها، کابل ها و بلبرینگ ها می باشد. روی در سال 1746 بوسیله شیمیدان آلمانی بنام مارگراف کشف شده است. این فلز برای مدت 2000 سال بعنوان یکی از اجزاء آلیاژ برنج در اروپا و آسیا مصرف می شده است. در حدود 150 سال پیش از میلاد مسیح رومی ها از این فلز و آلیاژهای آن سکه تهیه می کردند. امروزه بیشترین کاربرد روی در صنعت گالوانیزه، ترکیب آلیاژها و الکترونیک است. معمولا سرب و روی با یکدیگر و با فلزاتی چون مس، طلا و نقره همراه می باشند. همچنین کانسارهای سرب و روی با درصدهای متنوعی از این فلزات شناسایی شده اند. (4، ص 5)


2-1 ژئوشیمی و مینرالوژی سرب:

بطور کلی چهار ایزوتوپ پایدار سرب با اعداد جرمی 204،206،207 و 208 وجود دارند که از بین آنها ایزوتوپ 208 با فراوانی 1/52% بیشترین ایزوتوپ سرب است. ایزوتوپ‌های 206،207 و 208 محصولات نهائی متلاشی شدن اورانیوم و توریم می باشند. سرب بطور کلی از لحاظ فراوانی در پوسته زمین در رتبه سی و چهارم قرار دارد، سرب دارای کلارک 3-10*6/1% می باشد، در حال حاضر بطور متوسط حداقل ضریب تجمع سرب برای تشکیل کانسارهای اقتصادی در حدود 2000 می باشد. کلارک سرب از سنگهای باریک به سمت سنگهای اسیدی افزایش می یابد، بطوریکه میزان کلارک در سنگهای اوترابازیک 5-10*1% در سنگهای بازیک 4-10*8% و در سنگهای با منشأ ماگمایی اسیدی 3-10*2% می باشد. (4)

کانی های اصلی سرب و درصد سرب در هر کدام به ترتیب زیر می باشد:

گالن با 6/86% سرب، جیمسونیت با 16/40% سرب، بولانگریت با 42/55% سرب، بورنیت با 6/42% سرب، سروسیت با 6/77% سرب و آنگلزیت با 3/68% سرب.

3-1 ژئوشیمی و مینرالوژی روی:

روی دارای 5 ایزوتوپ پایدار است که اعداد جرمی آن 64، 66، 78، 80 می باشد که در این میان بیشترین ایزوتوپ آن ایزوتوپ 64 با فراوانی 9/48% می باشد. روی از لحاظ فراوانی در رتبه بیست و سوم پوسته زمین قرار دارد. کلارک روی تا حدودی بیشتر از سرب می باشد، میزان کلارک روی 3-10*3/8 و ضریب تجمع آن برای تشکیل کانسارهای اقتصادی 500 می باشد. میزان کلارک روی از سنگهای ماگمائی با منشأ بازی به سمت سنگهای ماگمایی با منشأ اسیدی افزایش پیدا می کند. میزان کلارک در سنگهای اولترابازیک 3-10*3% در سنگهای بازی 3-10*3/1% و در سنگهای اسیدی 3-10*6% می باشد. میزان کلارک در سنگهای اسیدی خیلی نزدیک به میزان کلارک در پوسته است. کانی های اصلی روی و درصد روی هر یک به صورت زیر می باشد:

اسفالریت با 67% روی، ورتزیت با 63% روی، اسمیت زونیت با 52% روی، همی مورفیت با 7/53% روی. (4)

4-1 انواع کانسارهای سرب و روی:

بطور کلی انواع کانسارهای سرب و روی عبارتند از:

3-1) اسکارن

3-2) رگه ای

3-3) استراتاباند

3-4) دگرگونی

1-4-1 کانسارهای اسکارن:

چنانچه در دگرگونی مجاورتی موادی از توده نفوذی به سنگ میزبان افزوده شود، کانسارهای اسکارن پدید می آید. بطور معمول کانی های منطقه اسکارن متنوع و فراوانند. اسمیرنف این کانسارها را با توجه به مبانی مختلف به پنج گروه تقسیم کرده که در این میان به رده بندی بر مبنای ترکیب سنگ های دربرگیرنده توده نفوذی اهمیت بیشتری داده زیرا به اسکارن آهکی، اسکارن منیزیتی و اسکارن سیلیکاته اشاره می کند.

امروزه این کانسارها را که از دیدگاه اقتصادی مورد توجه بسیاری از زمین شناسان قرار دارند بر مبنای نوع غالب و چیره و با ارزش موجود در آنها تقسیم بندی می کنند که در حقیقت دنباله رده بندی این کانسارها بر پایه نوع سنگ در بر گیرنده توده نفوذی است.

اینودیک بورت کانسارهای اسکارن آهکی را به پنج گروه اسکارن های آهن، تنگستن، مس، سرب، روی و قلع تقسیم کرده است. نکته قابل توجه این است که بر عکس کانی های موجود در اسکارن ها که ترکیبی پیچیده و متنوع دارند، کانه ها ، بطور معمول، سولفورها و اکسیدهایی با ترکیب ساده هستند. از مهمترین سولفورهای موجود در اسکارن ها اسفالریت و گالن را می‌توان نام برد. (4، ص 23)

کانسارهای اسکارن بیشتر به شکل ورقه، عدسی و یا رگه وجود دارند و دارای ضخامت چند ده متر و وسعت چندصد متر می باشند. در هر صورت مورفولوژی سولفیدهای سرب و روی بر روی ترکیب اسکارن آهکی تأثیر گذاشته و آنها را بیشتر پیچیده می کند. ماده معدنی در این موارد بیشتر به شکل عدسی، ستونی و یا پاکتی شکل دیده می شود. شکل کانسار چندین صدمتر در طول و در امتداد گسترش پیدا می کند؛ همچنین ضخامت آن نیز 1 تا 10 متر و یا بیشتر می‌تواند وجود داشته باشد.

-3-4-1 تیپ دره می سی سی پی

این کانسارها در حقیقت منابع اصلی سرب و روی دنیا هستند. گسترش آنها بیشتر در اروپا، شمال آمریکا و شمال آفریقا است. نمونه هایی از این کانسارها در دیگر نقاط جهان از آن جمله شمال استرالیا نیز دیده شده است. کانسارهای یاد شده در اروپا در

منطقه آلپ به نام کانسارهای آلپی و در آمریکا در نواحی میانه دره رودخانه می سی سی پی معروف به کانسارهای نوع دره می سی سی پی هستند. این کانسارها بیشتر در رسوب های پالئوزوئیک و مزوزوئیک اختصاص دارند. نوع سنگ میزبان اکثر آنها سنگ های آهکی است.

استانتون (1972) به همین جهت این کانسارها را زیر عنوان همراهی سنگ آهک سرب و روی مورد بررسی قرار داده است. سنگ در برگیرنده کانه ها اکثراً آهک منیزیم دار و دولومیت است. در برخی مناطق کانسار حالت لایه مانند دارد؛ غالباً سولفیدها به صورت رگه ای پر کردن فضاهای خالی را ایجاد کرده و یا بصورت بافت برشی دیده می شوند.

کانی های مشخص این کانسارها عبارتند از: گالن، اسفالریت، باریت و فلوریت به این ترتیب این کانسارها نشانه جدا شدن مقادیر قابل ملاحظه ای از عناصر سرب ، روی، باریم و فلوئور از بخشی از پوسته زمین و تمرکز آنها در بخش دیگر است. از مشخصات اسفالریت این کانسارها رنگ پریدگی و وجود مقدار جزئی آهن و منگنز در ترکیب آن است. استانتون (1972) خاستگاه کانسارهای نوع دره می سی سی پی را به دو گروه تقسیم کرده است.

1- در ارتباط با مراحل رسوبگذاری:

الف ) نتیجه رسوبگذاری از آب دریا:

ب) نتیجه جدا شدن مستقیم از بخارها و گازهای حاصل از فعالیت های توده های نفوذی زیردریایی

ج) نتیجه رسوبگذاری مواد تخریبی

د)‌حرکت مواد موجود در محلول های درون خلل و فرج سنگ ها و رسوبگذاری آنها در شرایط مناسب

هـ) تشکیل رگه ها و جانشینی کانی در مراحل دیاژنز سنگ؛

2- در ارتباط با سیال های وارد شده:

الف ) سیالات با خاستگاه آذرین

ب) سیالات با خاستگاه ژرف

از کانسارهای مهم نوع دره می سی سی پی می توان کانسار سرب و روی سیلیسیای بالایی در کشور لهستان، کانسارهای متعدد آمریکا و تعدادی از کانسارهای سرب و روی ایران از جمله کانسار سرب نخلک را نام برد. (4، ص 26، 27).


2-3-4-1 کانسارهای لایه ای شکل:

کانسارهای سرب و روی لایه ای شکل در مناطق زیر شناسایی شده اند. اتحادجماهیر شوروی، آسیای مرکزی، در نواحی لهستان، بلغارستان، یوگسلاوی، استرالیا، فرانسه، ایتالیا، اسپانیا، ایران، الجزیره، تونس، آمریکا و کانادا.

این کانسارها از سنگهای کربناته بسیار ضخیم تشکیل شده اند که سن آنها پالئوزوئیک و به طور کمتر مزوزوئیک می باشد. ساختارها و تشکیلات این کربنات ها ده ها و صدها کیلومتر وسعت دارد و در پلاتفرم رسوبی و قدیمی اپی هر سینین واقع شده است که روی تشکیلات ژئوسینکلینال را می پوشاند.

ماده معدنی در بیشتر مواقع شبیه صفحات هماهنگ و یک ساختار عدسی شکل می باشد که در دو مرحله شکل گرفته است. بندرت ماده معدنی دارای ساختار رگه ای و یا لوله ای می باشد. ماده معدنی دارای وسعت قابل ملاحظه ای در جهت امتداد از چند صد متر تا چند کیلومتر می باشد، همچنین در جهت شیب نیز دارای طول 800 تا 1000 متر می‌باشد. ضخامت آن نیز دارای رنج متغیر و از 5 تا 200 متر و بطور میانگین 10 تا 20 متر می باشد.

ماده معدنی در ساختار خود دارای عناصر سرب و روی و یا فقط سرب یا روی به طور مجزا می باشد. کانی های اصلی نیز با اسفالریت، گالن و در بعضی مواقع پیریت مشخص می گردد. کانی های گانگ شامل: کلسیت، دولومیت و بندرت باریت می باشد. مارکاسیت، کالکوپیریت و بورنیت کانی های فرعی محسوب می گردند. همچنین کوارتز و فلوریت کانی های فرعی گانگ به حساب می آید.

در مورد پیدایش کانسارهای لایه ای سرب و روی تردید و اختلاف نظر وجود دارد تعدادی از دانشمندان معتقدند که این کانسارها دارای منشأ اپی ژنتیک می باشد در حالیکه گروه دیگر معتقدند که این کانسارها در رسوبات سن ژنتیک پیدایش و تکوین شده اند.



خرید فایل


ادامه مطلب ...

بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر)

بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر)



ریخته گری و متالوژی پودر:

مقدمه: ریخته گری در اشکال مختلف آن یکی از مهمترین فرایندهای شکل دهی فلزات می باشد. گرچه روش ریخته گری ماسه ای یک فرایند متنوع بوده و قادر به تولید ریخته با اشکال پیچیده از محدوده زیادی از فلزات می باشد، ولی دقت ابعادی و تشکیل سطح مختلف ساخته شده به این روش نسبتاً ضعیف می باشد. علاوه بر این ریخته گری ماسه ای عموماً برای حجم تولید بالا مناسب نمی باشد. به ویژه در جایی که ریخته ها احتیاج به جزئیات دقیق دارد، جهت از بین بردن این محدودیت ها فرایندهای ریخته‌گری دیگری که هزینه تولید کمتری هم دارند به وجود آمده اند، این روش شامل:

(i) قالب گیری پوسته‌ای

( ii ) قالب‌گیری بسته‌ای

(iii ) دای کاست یا ( ریخته گری حدیده ای که علاوه برفرآیندهای ریخته گری شکل دهی قطعات با استفاده از پودرهای فلزی نیز شامل این فصل می باشد.

قالب گیری پوسته ای: این فرآیند را می توان به عنوان فرآیند گسترش داده شده ریخته گری ماسه ای دانست. اصولاً این روش از 2 نیمه مصرف شدنی قالب یا پوسته قالب از ماسه مخلوط شده با یک چسب مناسب جهت ایجاد استحکام در برابر وزن فلز ریخته شده، پخته شده است تشکیل می شود.


شکل دهی پوسته:

برای تشکیل پوسته ابتدا یک نیم الگوی فلزی ساخته می شود که معمولاً از جنس فولاد یا برنج می باشد و به صفحه الگو چسبانده می شود. یک الگوی راه گاه بر روی این صفحه تعبیه می شود. بر روی الگو یک زاویه 1 تا 2 درجه برای راحت جدا شدن ایجاد می شود. همچنین بر روی صفحه الگو دستگیره هایی برای جدا کردن صفحات ایجاد می شود.

پخت جزعی: این مجموعه تا درجه حرارت در کوره یا توسط هیترهای مقاوم الکتریکی که در داخل الگو نصب شده اند گرم می شوند. از هر کدام از روشهای حرارت دهی که استفاده شده باشد صفحه الگو به جعبه های ماسه مخلوط شود. با چسب تر متوسط متصل می شود این جعبه سپس وارونه شده تا مخلوط ماسه و چسب بر روی الگوی حرارت دیده ریخته شود تا رزین یا چسب ذوب شده و باعث چسبیدن ماسه شود. پس از 10 تا 20 ثانیه را برگردانده تا یک لایه ( حدوداً نیمه پخته شده پوسته که به الگو چسبیده باقی بماند.

پخت نهایی و ریزش:

مجموعه صفحه الگو به همراه پوسته به داخل کوره براه شده تا پخته نهایی در درجه حرارت 300 الی در مدت زمان 1 الی 5 دقیقه صورت گیرد. زمان و درجه حرارت دقیق جهت این کار بستگی به نوع رزین مصرف شده دارد. پس از پخت پوسته از صفحه الگو جدا می شود هر دوی پوسته ها به این روش ساخته می شود. و قالب به هم چسباندن 2 نیمه توسط چسب یا کلمپ یا پیچ کامل می شود.





قالب همگون آماده ریختن می باشد. در جاهایی که احتیاج به قسمتهای تو خالی
می باشد. فنری قرار داده می شود و این ماسه مشابه روش ریخته گری ماسه ای انجام
نمی شود. مراحل ساخت یک پوسته قالب در شکل (1. 2) نشان داده شده است.

مراحل تهیه و ساخت قالب گری پوسته ای:

در مقایسه با روش ریخته گری ماسه ای قالب گیری پوسته ای دارای مزایای زیر
می باشد:

a) دقت ابعادی بهتر یا تلرانس ( ).

b) تکمیل سطح بهتر یا قابلیت دوباره تولید جزئیات دقیق تر.

c) این فرآیند جهت کارکردهای غیر ماهر یا با مهارت کم می توانند استفاده کنند.

اشکال این روش قسمت بالای الگوها و ماسه قالب گیری آنها می باشد. ( هر چند ) چون فرآیند نیمه مکانیزه می باشد زمان تولید یک پوسته قالب در مقایسه با ساخت یک قالب برای ریخته گری ماسه ای به صورت قالب ملاحظه ای کمتر می باشد. بنابراین این فرآیند جهت تولید ریخته اثر بالا که هزینه های اولیه در آن قابل جبران می باشد مناسب می باشد.

قالب گیری Invesment ) (بسته‌ای)

این روش ریخته گری قدمتی مانند ریخته گری ماسه ای دارد توسط قدیمیان جهت ساخت قطعات با جزئیات دقیق مانند دسته شمشیر و جواهرات مورد استفاده قرار گرفته است. در طول قرن ها این فرآیند محدود شده بود به مجسمه های برنزی و به درستی تنی فرآیندی است که امروزه در این حرفه مورد استفاده قرار می گیرد در پانزده سال اولیه این قرن بوده که قالب گیری Invesmemt جهت فرآیندهای صنعتی به ویژه در جابه جائی که ریخته ها با دقت ابعادی و تکمیل سطح بالا مورد نیاز است مناسب تشخیص داده شده.

اساساً رویه فوم از مراحل ساختن و شکل دادن تشکیل شده است که از مواد نسوز (مقاوم در مقابل حوادث ) برای شکل دادن قالب پوشانده می شود.

وقتی پوشانده سخت می شود فوم مذاب از حفره های قالب بیرون زده و از آهن مذاب پر می شود. زمانی که آهن مذاب به درجه انجماد رسید و قالب نسوز شکسته
شد، چدن ریخته گری ظاهر می شود.

I) مدل ساخته می شود. II) مدل پوشانده می شود. III ) آهن ریخته گری می شود.

ساختن مدل

برای رویه فوم به یک قالب دو نیمه ای لازم است که اساساً از یک یا دو روش زیر ساخته می شود.

1) زمانیکه انتظار دوام طولانی داشته باشیم، قالبها معمولاً از آهن، استیل، برنج، آلومینیوم ساخته می شوند. شکل معکوس قالب را در فلز تراش داده و آن را برای راحتی انقباض مقداری بزرگ می سازند، که مقدار دقت و مهارت در این مرحله خیلی بالاست. دقیقاً مانند مرحله ساخت قالبهای پلاستکی.





2) اگر دوام قالب مهم نباشد. از قالبهای ارزانی که با آلیاژ های نقطه ذوب پائین ساخته شده استفاده می شود. مراحل در شکل (2-2) نشان داده شده است.


اولین لازمه قالب اصلی است که از برنج یا استیل ساخته شده است که از سطح صاف و صیقلی ساخته شده، برای انقباض موم مقداری اندازه آن را بزرگ می سازند. شکل تا

عمق نصف قالب داخل ماسه فرو می رود و قالب استیلی دور بقیه شکل قرار داده میشود و با آلیاژهای بانقطه ذوب پائین 19 درجه سانتیگراد پر میشود.

پس از انجماد شدن آلیاژ دو نیمه قالب از هم جدا می شود و ماسه اطراف آن عوض میشود با همان آلیاژ نقطه ذوب پائین مانند قبل.

هر کدام از روشهای ساخت نوع قالب استفاده شده را معین می کند. و پس از انتخاب موم گداخته شده را داخل آن تزریق می کنیم و آن را مونتاژ می کنیم. بعد از انجماد موم قالب را دو نیمه کرده و موم شکل گرفته را از آن خارج می کنیم.





پوشاندن مدل:

به پوشش نسوزی که به روی شکل کشیده می شود که قالب را تکمیل کند و به آن پوشاننده می گویند. و در دو مرحله انجام می گیرد.

پوشانده اولیه از رنگ کردن یا فرو بردن شکل در آبی که مخلوطی از سدیم سلیکات و اکسید کرومیک و آرد زارگون است تشکیل شده قبل از خشک شدن پوشش معمولاً مقداری پودر خاک نرم روی آن ریخته، برای پوشاندن و زمینه را برای پوشاندن نهائی فراهم می کند. بعد از خشک شدن یک قالب فلزی دور شکل پوشیده شده می گیرند و با پوشش دوم که معمولاً از موادی که آب با آلومینیوم گداخته شده یا خاک رس مذاب تشکیل شده پر می کنند. برای اطمینان مواد نسوز دور اولین لایه پوشش را فرا می گیرد و معمولاً قالب را تکان می دهند. قالب را در کوره با درجه حرارت کم قرار می دهند تا اینکه هم پوشش سخت می شود و هم موم ذوب می شود و از قالب خارج می شود که در دفعات بعد استفاده شود. این مراحل معمولاً 8 ساعت در دمای 95 درجه سانتیگراد طول می کشد. زمان و حرارت دقیقاً به نوع جنس موم بستگی دارد. سپس درجه حرارت تا 1000 درجه سانتیگراد افزایش می یابد. تا اینکه قالب کاملاً سخت شده و هیچگونه اثری از موم باقی نماند. قالب برای قالبگیری آماده است. (در شکل 4-2)





قالب گیری فلز:

زمانیکه قالب گرم است آنرا در کوره ای که با برق گرم می شود و مواد مذاب در آن موجود است قرار می دهند (شکل 5-2) در درجه حرارت مناسب کوره را بر عکس کرده تا مواد مذاب وارد قالب شود. برای اطمینان از اینکه مواد مذاب درون تمام حفره‌ها را پر کرده، معمولاً مواد را با فشار زیاد تزریق می کنند. بصورتیکه تمام جزئیات نشان داده شود. سپس بعد از سرد شدن (انجماد) قالب کوره به حالت اولیه برگردانده می شود و قالب برداشته می شود. سپس با چکش های باید و قلم مواد را از قالب خارج
می کنند.





مزایای پوشاندن قطعه:

برتریهای این رویه بطور خلاصه در زیر توضیح داده شده است.

الف ) این نوع قالب گیری دقت دقیقی دارد و با تلرانس 8/0+ میلی متر ممکن است.

ب ) سطح صیقلی بسیار مناسبی دارد که دیگر به صاف کاری احتیاج ندارد و این در قالب گیریهائی که با فلز درست می شوند و سخت هستند مهم می باشد، برای عملیات دوباره صاف کاری (آلیاژهای کروم و نیکل) در پروانه توربینها استفاده می شود.

برتریهای این رویه بطور خلاصه در زیر توضیح داده شده است.

الف) این نوع قالب گیری دقت دقیقی دارد و با تلرانس 8/0 + میلی متر ممکن است.

ب) سطح صیقلی بسیار مناسبی دارد که دیگر به صاف کاری احتیاج ندارد و این در قالب گیریهائی که با فلز درست می شوند و سخت هستند مهم می باشد، برای عملیات دوباره صاف کاری ( آلیاژهای کروم و نیکل ) در پروانه توربینها استفاده می شود.

ج) از آنجائی که شکل موم دقیقاً مانند قالب نهائی است و تمام قسمتها مشخص
می شود و به قطعات ریز دیگر احتیاجی نمی باشد.

د) قطعات ممکن است در یک واحد درست بشوند. اگر از روش دیگر استفاده
می گردید، ممکن بود قطعه از چند قسمت تشکیل شود و در کنار همدیگر مونتاژ شود.

شکل اصلی این رویه این است که وسایل و هزینه تولید بسیار بالاست ولی چون تراشکاری اضافی احتیاج نمی باشد. مانند قالب گیریهای دیگر این هزینه سنگین با صرفه و مورد قبول است.

قالب ریخته گری فلزی:

در قالب گیری که توضیح دادیم از پوششهای مصرفی استفاده می کنیم. ولی قالبهای ریخته گری بر مبنای استفاده از قالبهای فلزی دائمی است که به اسم قالبها می باشند. از آنجائیکه طراحی و تولیدشان گران است و از ماشین های گران قیمت استفاده می شود. این روش زمانی اقتصادی است که در حجم زیاد تولید شود.

فلزقالب ریخته گری فلز:

فلز مورد استفاده برای قالب ریخته گری بطور کلی محدود به گروهی از فلزات غیر آهنی است، بدین ترتیب برای مدت زیادی عمر می کنند که نقطه ذوب آنها پایین تر از آلیاژها است.

دو شرط در این است که باید سیالیت خوب داشته باشند و در ضمن در برابر «تردی داغ» هم حساس نباشد. تردی داغ عبارتی است که برای توصیف تردی قطعات ریختگی در دمای بالا به کار می رود آلیاژهای مورد استفاده شامل آلیاژهای پایه آلومینوم روی منیزیم قلع و سرب و به مقدار محدودی برنج و برنز هستند تا کنون رایج ترین فلزات مورد استفاده در این روش آلیاژهای پایه آلومینیوم به صورت زیر است:

مس 4% سیلسیم 5% آهن 3% نیکل 2% و منیزیم 5/0% از قطعات ریخته گری تحت فشار آلومینیوم در جاهایی استفاده می شود که نسبت به استحکام به وزن بالایی موردنیاز است یک آلیاژ پایه روی معمولی شامل 4% آلومینیوم 7/2% مس و 3% منیزیم است این آلیاژ خواص ریخته گری خوبی دارد و به علاوه این مزیت را هم دارد که دمای ریخته گری آن در مقایسه با آلیاژهای پایه قلع و سرب محدود است کاربرد اصلی آنها در ساخت یاتاقانهای فشار پایین و قطعاتی دیگر است که در آنها استحکام یک فاکتور با اهمیت نیست آلیاژهای منیزیم که گاهی اوقات با نام تجاری Elektron شناخته می شوند در بین آلیاژهای فوق از همه سبکتر هستند و در جایی استفاده می شود که مسئله وزن و مقاومت در برابر خوردگی بهترین ملاحظات موجود باشند.

فرآیند دای کست (ریخته گری تحت فشار)

ریخته گری تحت فشار به طور عمده شامل دو نوع فرایند است.

1) ثقلی 2) فشار بالا (تحت فشار)



لنزهای موازی

فعالیت این لنز از فشرده سازی منبع نور در میله نوری موازی می باشد، این اندازه‌گیری پرتو افکن برای کار اهمیت بسیاری دارد که با تابش نور روشن شده توسط میله موازی نوری اندازه ثابتی را پرتو افکن می نماید.

با مطالعه تصویر 12. 3 به این اصل پی خواهید برد.





پروژه عدسی

عمل کرد این نوع عدسی ها به این صورت است که یک تصویری از عملکرد وابسته و مناسب بزرگ سازی و توسعه در روی پروژه می باشد.

نوع بزرگ سازی سودمند مفید آن شامل درصدهای یعنی از 10، 15، 25، 50، 100
می باشد در این پروژه عدسی نشان می دهد که در شکل 11. 3 که مشابه عدسی گفته شده می باشد که کفایت کننده آن می باشد.

از نوعی از عدسی های نامناسب برای پروژه های برنامه نویسی استفاده می شود. هر چند که این نوع ممکن است احیاء کننده با ملاحظه توسط فرهنگ نوری باشد که در یک نوع سیستم کلی عدسی به کار می رود که در شکل 13. 3 نمایش داده می شود.




انواع پرتو افکن ها

در ابتدا استحکام و درست شدن پرتو افکن ها از وسایل موجود در کارگاه ها و در میان پیوستگی انجام می شد عدسی ها منبعی برای روشن سازی استفاده می شود. این پرده و عدسی ها ثابت بود و در روی دیوار که پروژه تصویری روی آن انجام می شد مطابق کار پرتو افکن ها ایجاد می شود.

این سیستم یک اشکالی دارا بود که در وضعیت اصلی و در یک مساحت کم بزرگ سازی می کرد که برای دوربین مخصوص فواصل دور استفاده می شد.

پرتو افکن های امروزی هر چند دارای یک نظام بسته کاملاً نوری بودند که در یک محفظه بسته مناسب وجود دارد. که این محفظه ممکن است عمودی یا از نوع افقی باشد که در شکل 14. 3 نمایش داده شده است.






روشهای اندازه گیری

روشهای اندازه‌گیری در این پروژه اندازه‌گیری یک روش ساده بوسیله بکار بردن قانون فولادها می‌باشد. این روش معقول قوانین فولادی می‌تواند بکار برده شود.

برای اندازه‌گیری با دقت از mm 3/0 میلیمتر بکار می‌رود و اگر چه بوسیله این دقت کار به خوبی انجام شدنی می‌باشد که با زیاد کردن دورهای بزرگ سازی می‌توان آن را بهتر کرد.

این بدان منظور است که برای مثال وقتیکه یک بزرگ سازی از ضریب15 را به کار می‌بریم وقت واقعی وابسته به آن انجام می‌شود تا بزرگی آن به 02/0، 15/3 میلیمتر برسد.

برای راحتی و بالا بردن اعتبار معمولاً اندازه‌گیری خطی ابعاد متناسب با پایه انجام می‌شود.

این اختراع واحد اندازه‌گیری برای این کار بود که در یک وسیله حرکت برای کنترل مقدار عددی در دو صورت هدایت کننده می‌باشد که در درجه یکدیگر را در بخش افقی مماس هم می کنند. این کار برد اولین موقعیت در مقابل یک ماخذ و منبع در به شکل درآوردن یک خط عرضی و مارپیچ روی پرده و مطالعه روی یک میکرومتر مناسب می‌باشد و در آن منبع یک میکرومتر دیگری مطالعه می‌شود که تفاوتهایی که در این دو مطالعه وجود دارد که نشانگر دقت ابعاد اندازه‌گیری گوشه‌ای از این ابعاد ممکن است از نظر مقدار مشابه روش قبلی باشد که در این دقت یک پرده سنجش را انجام داده که به طور واحد به کار برده می‌شود. که این کار با یک کنترل کننده مقدار میکرومتر یا درجه‌بندی فرعی تنظیم می‌شود که در شکل 15/3 نمایش داده می‌شود.





پروژه‌ای از نمودارهای پیچیده:

در بازرسی و بازدید پروژة نوری بکار برده شده و رسیدگی کردن اجزائی از شکل پیچیدة e.g که شکل ابزار و نوعی نمودار فرانوری می‌باشد. این کار اغلب دست یابی بوسیله سنجش نمودار با یک الگو می‌باشد. این آمادگی مخصوص بوسیله بزرگی نقشهای نمودار می‌باشد که ( متناظر با بزرگ‌سازی نوری ) وابسته به یک فیلم و اشکال شفاف کننده می‌باشد.که معمولاً نصب می‌شود در روی شیشه برای محافظت از نور نصب می‌شود و عموماً وقتی که این منبع در جلو قرار می‌گیرد انجام می‌شود و تلرانس اجزاء متعلق به آن نمایش داده می‌شود. بنابراین ساختن آن ممکن است با تاریخچه دایر کردن آن یکی شود. اگر اجزاء درون آن در اندازه مخصوص ساخته شده باشد وقتی که پروژه نوری که در شکل وجود دارد مانند پیچاندن باریک خطی می باشد که این کار بوسیله هجوسازی اشکال انجام می‌شود که در شکل 16/3 نمایش داده می‌شود که شکل مورد نظر به دو صورت a b می‌باشد که هر دو شکل در صفحة بعد نمایش داده می‌شود.



روشن است که یکی از مؤثرترین هم تراز کننده یک ریسمان مارپیچ است که این کار با هجوسازی ممکن است. معمول‌ترین کار قبول مدل این پروژه می‌باشد. که اول سنجش شکل خارجی نقطه اثر که از خارج آن اندازه‌گیری می‌شود.

این هجوسازی یک نوع بلعیدگر و همچنین که این حاشیه و لبه پوشیده می‌شود. بعد از این که نشان دادن شکل ممکن شد برای سیمای درونی نقاط و تولید نقاط و پیدا کردن صحیح نمودار می‌باشد.

شکل درونی هر یک از اشکال باریک نمی‌تواند بصورت یک پروژه مستقیم باشد. تنها راه ممکن پیروزی این مسئله در ساختن یک پروژة صحیح و کلی از همان راه برای اشکال باریک می‌باشد. در این روش از اشکال باریک مهم‌ترین عمل آن است که در بخش خارجی آن را غیر جدی گرفته شود و بی‌توجهی همچنین به کوچکترین شکل خطری از تعریف آن می‌باشد.


فهرست مطالب

ریخته گری و متالوژی پودر ۶
شکل دهی پوسته ۷
پخت نهایی و ریزش ۷
مراحل تهیه و ساخت قالب گری پوسته ای ۸
قالب گیری Invesment ) (بسته‌ای) ۹
پوشاندن مدل ۱۲
قالب گیری فلز ۱۳
مزایای پوشاندن قطعه ۱۴
قالب ریخته گری فلزی ۱۵
فلزقالب ریخته گری فلز ۱۵
دای کست ثقلی ۱۶
دای کست تحت فشار (فشار بالا) ۱۷
قالب های ریخته گری تحت فشار ( دای کست ) ۲۰
ویژگیهای مراحل مختلف قالب ریزی ۲۲
متالوژی پودری ۲۲
همگن سازی ۲۴
محدودیت ها و ملاحظات طرح ۲۵
اندازه گیر ۲۸
تطبیق گرها ۲۸
تطبیق گر مکانیکی ۲۹
تطبیق گر با تسمه پیچشی ۳۰
تطبیق گر الکترونیک ۳۲
تطبیق گر نوری ۳۴
روش های اندازه گیری فشار باد ۳۵
روشهای اندازه گیری ۳۷
لنزهای موازی ۴۱
پروژه عدسی ۴۱
انواع پرتو افکن ها ۴۲
روشهای اندازه گیری ۴۳
پروژه‌ای از نمودارهای پیچیده ۴۴
کاربردهای اتوکولیماتور ۴۹
اندازه گیری گوشه‌ها و زوایا ۵۳
زاویه دکور: ( Dekkor ) 54
تراز دقیق ۵۶
اندازه‌گیری سطح تمام شده ۵۷
آرایش ۵۸
سیستم اندازه‌گیری ۵۸
روشهای اندازه‌گیری ۵۹
وسایل ثبت الکتریکی ۶۲
آزمایشات برای مرغک ماشین تراش ۶۴
محور موازنه ماسوره با بخش متحرک ماشین تراش ۶۵
گونیای متحرک لغزنده مقطع ( عرضی ) با محور ماسوره ۶۶
محور موازنه انتهای بدنه تیغه همراه با بستر ۶۷
آزمایش هایی برای ماشین های فرز افقی ۶۷
میز متحرک موازی با تی اسلات مرکزی ۶۷
گونیای محور ماسوره‌ای با تی اسلات مرکزی ۶۸
میز گونیای شکل با استفاده از شیوه‌های عمودی ۶۹
آزمایش‌های ماشین‌های سوراخکاری ۷۰
حدود و انطباق‌ها ۷۲
سیستم های محدودیات و تناسبها ( timit -&-fits ) 76
انحراف اساسی ۷۷
تعیین نوع اندازه مبنا ۷۹
حد اندازه‌گیری ۸۱
تلرانسهای مقیاسی ( نمونه ) و دقت مجاز فرسایشی ۸۳



خرید فایل


ادامه مطلب ...

بررسی کاربرد زبان در ایجاد ارتباط در جوامع مختلف

بررسی کاربرد زبان در ایجاد ارتباط در جوامع مختلف


جامعه‌شناسی، و انسان‌شناسی بر روی شماری از موضوعات آن صورت می‌گیرد که بسیاری از آنها را در این مورد بررسی قرار خواهیم داد.

در این فصل توجه خود را معطوف به کاربرد اصلی زبان ، یعنی ارتباط ، خواهیم کرد. خواهیم دید ارتباط چه مشکلاتی برای کاربرد شناسی ایجاد می‌کند و دارای کدام ساخت است . در نهایت به برخی موضوعات ویژه در کاربرد‌شناسی خواهیم پرداخت.

طرح مسئله

شاید رایج‌ترین ویژگی تعامل انسان که به سختی آن را قابل ملاحظه می‌دانیم، این است که ما صحبت می‌کنیم. بعضی اوقات با اشخاص خاص، بعضی اوقات با هر کس که گوش می‌دهد، و در زمانی که کسی را برای گوش کردن نمی‌بابیم، با خودمان صحبت می‌کنیم. اگرچه زبان انسان، نقش‌های بسیار متنوعی را ایفاء میکند- از بیدار کردن کسی در صبح زود با گفتن تا نامگذاری یک کشتی با گفتن ولی در اینجا به آن کاربرد‌‌های زبان خواهیم پرداخت که برای ارتباط انسان، ابزاری است. برای مثال، متکلمین ماهرزبان انگلیسی حقایقی از قبیل زیر را می‌دانند:

الف- برای سلام به کارمی‌رود.

ب- برای خداحافظی به کار می‌رود.

ج – گروه به طور صحیح می‌تواند توسط متکلم در یک موقعیت خاص برای اشاره به میز خاصی بکار برود.

د – گروه به طور صحیح می‌تواند توسط متکلم در یک موقعیت خاص برای اشاره به میز خاصی بکار برود.

ه - برای درخواست نمک به کار می‌رود.

و - برای پرسیدن سن شخصی به کار می‌رود.

ز - برای بیان اینکه باران می‌بارد، مورد استفاده قرار می‌گیرد.

ح - برای قول دادن مورد استفاده قرار می‌گیرد.

ما از این فهرست می‌توانیم به شمه‌ای از انواع گستردة کاربردهای احتمالی زبان دست یابیم، ولی قبل از مرور این کاربردهای گوناگون، نخست باید بین استفاده از زبان برای انجام دادن کاری، واستفاده از زبان در انجام کاری تمیز قایل شویم، بدون شک یک حقیقت بسیار مهم دربارة انسان این است که ما زبان را در اکثر افکارمان به کار می‌بریم. احتمال دارد که برخی از افکار راکه به آن می‌اندیشیم، و به ویژه افکار مجرد و انتزاعی را، اگر زبانی در دسترس نداشتیم، نمی‌توانستیم به آنها بیاندیشیم. این حقیقت ممکن است برای حیات شناختی ما مهم باشد ، ولی برای مفهوم کاربرد شناختی کاربرد زبان ، یعنی استفاده از زبان برای انجام کارها، مهم نیست . وقتی توجه خود را بر اینکه مردم با استفاده از زبان می خواهند چه بکنند، معطوف می‌کنیم، در واقع توجه خود را معطوف به این می‌کنیم که شخص با کلمات درمواقع خاصی چه می‌مند ، در واقع بر نیات، مقاصد، تاورها ،و آرزوها ‌یی که یک متکلم در صحبت کردن دارد، متمرکز می‌شویم .

صحبت کردن همواره بدون تلاش وامری عادی است، ولی کاربرد موفق زبان عملی فوق‌العاده پیچیده است، همانطور که این موضوع را هرکس به عنوان فردی بزرگسال که سعی کرده است تا زبان دومی را یاد بگیرد، می‌داند. افز‌ون بر این‌، کاربرد یک زبان بیش از دانستن آن وقادر به تولید وفهم جملات آن است. ارتباط همچنین امری اجتماعی است، که معمولاَ در درون بافت نسبتاَ به خوبی تعریف شدة موقعیت اجتماعی صورت می‌گیرد. در چنین بافتی ما به دیگران اتکا می ‌کنیم تا در درک ما از اینکه آن موقعیت چیست، سهیم باشند. با مردمی که می‌شناسیم ، به فهمیدن مشترک متکی هستیم تا ارتباط تسهیل شود. ولی این فرایند ،چگونه فرآیندی است؟ ارتباط زبانی به آسانی حاصل می‌شود ولی مسلم است که به آسانی قابل توصیح نیست، هر نظریه ارتباط زبانی که شایستگی این عنوان را داشته باشد،باید سعی ن‌‌ماید تا به سؤالات زیر پاسخ دهد:

1- ارتباط زبانی (موفق) چیست؟ 2- ارتباط (موفق) چگونه صورت می‌گیرد؟ برای مثال ، فرض کنید‌ که یک متکلم قصد د ارد تا به شنونده‌ای گزارشکند که جاده یخ زده است. چه چیزی متکلم را قادر می‌سازد تا بتواند این موضوع را به شنونده بگوید؟ ‌

( جای تعجب است که این سوالات در پیشینه هیچ رشته اصلی بطور جامع مورد بررسی قرار نگرفته‌اند. زبان‌شناسی با توجه به ویژگی ساختاری زبان، سعی کرده است تا پدیده‌های ارتباطی را در خارج از قلمرو اصلی آنها بداند. به همین منوال ، می‌توان آن علایق فلسفی درباره معنی، صدق، وارجاع را بدون بررسی جزئیات امر ارتباط دنبال کرد. روانشناسی سنتی توجه خود را معطوف به پردازش جمله‌ها می‌کند، اما علاقه زیادی به ویژگی‌‌های پدیده‌های ارتباطی ندارد. در نهایت، برخی جامعه‌شناسان و انسان‌شناسان شروع به بررسی گفتگوها و مکالمات کرده‌‌اند، با این وجود مسئله ماهیت خود ارتباط را نادیده گرفته‌اند (یا فرض کرده‌اند که پاسخ آن را داده‌اند) . بنابراین، چیزی که مورد نیاز است، رویکردی منسجم به پدیدة ارتباط است که در آن مسئله ماهیت ارتباط مرکز تحقیق و بررسی باشد.) فقط در سالهای اخیر شکل یک نظریة بسندة ارتباط شروع به شکل‌گیری کرده است،و.زمان و پژ وهش بیشتری مورد نیاز است تا مفصلاً آن را کشف کند.

(الگوی پیام ارتباط زبانی)

در چهل سال گذشته متداولترین و معروف ترین برداشت از ارتباط زبانی انسان، آن چیزی بوده که ما آن را الگوی پیام می‌نامیم . وقتی الگوی پیام به عنوان یک « فرستنده» و شنونده به عنوان یک گیرنده فر ض می‌شود، و مسیر کلامی – گوشی( یعنی موج صوتی) نیز کانال صحیح می‌باشد الگوی پیام در ارتباط انسانی در شکل 9ـ1 نشان داده شده و در (6 ) خلاصه شده است.

شکل 9ـ1 ( الگوی پیام ارتباط متکلم پیامی در مغزش دارد که می‌خواهد به شنونده انتقا ل دهد و بتابراین متکلم از برخی صورت‌های زبان برای رمزگذاری پیام به منزلة معنای آن سود می‌جوید وآن را تولید می‌کند. شنونده با شنیدن صحبت، شروع به تشخیص اصوات، نحو و معنا می‌کند، و سپس با دانش ربای خود این معانی را به صورت یک پیام رمز‌گشایی شدة‌ موفق تضنیف می‌نماید.

این الگو توجیه‌گر برخی ویژگی‌های متداول گفتگو است: یعنی این الگو پیش‌بینی می‌کند زمانی ارتباط موفق است که شنونده همان پیامی را رمز‌گشایی شده با پیام رمز‌گذاری شده متفاوت باشد، ارتباط مختلف می‌شود. به همین منوال، این الگو، زبان را به منزلة‌ پلی‌بین متکلم و شنونده می‌داند که اندیشه‌های « خصوصی» توسط اصوات « همگانی» منتقلش می‌شود، که در نتیجه این اصوات به عنوان وسیله‌آی برای انتقال پیام مربوطه عمل می‌کند.

الگوی پیام گرچه دارای شمای جدیدی است، ولی حداقل به سه قرن قبل و به فیلسوف معروف جان‌لاک بر می‌‌گردد، که در سال 1691 چنین نوشت:

بنابراین، انسان به طور طبیعی دارای چنان اندامی شد که مناسب تولید اصوات باشد، که آنها را کلمه می نامیم. ولی این به تنهایی برای تولید زبان کافی نبود. چون طوطیان و برخی پرندگان دیگر را می‌توان آموخت تا اصوات را به اندازة کافی قابل تشخیص ادا کنند، به هیچ وجه نمی‌توان آن را زبان دانست.

پس، افزون بر اصوات صوتی، لازم آمد تا بتواند این اصوا را به مثابه علایمی از برداشت های داخلی به کار برد، و آنها را به منزلة‌ نشانه‌هایی برای ایده های ذهنی خود قرار دهد، تا بدین وسیله این ایده‌ها ر بتوان برای دیگران نمایاند و افکار اذهان انسان‌ها بتواند از فردی به دیگری منتقل شود.

جهت راحتی و سود جامعه که بدون انتقال افکار نباشد، لازم شد که انسان برخی نشانه های خارجی قابل فهم وملموس را پیدا کند، که از طریق آن ایده‌های غیر ملموس، که افکارشان آنها را می‌ساخت، برای دیگران شناخته شود.

افزون بر این، بسیاری از گفته های معاصر وجود دارد که اساساً همین ایده را می‌رسانند:

متکلم: بنابه دلایلی که زبان شناختی نیست، پیامی را که مایل است به شنوندگانش منتقل سازد، بر می‌گزیند، یعنی افکاری را که می‌خواهد آنها دریافت کنند. یا دستوراتی را که می‌خواهد به آنها بدهد، با سئوالاتی که می‌خواهد از آنها بپرسد. این پیام به شکل نمایی آوایی از گفته‌ها به واسطة‌ نظام قواعد زبانی، که متکلم مجهز به آن است، رمز‌گذاری می شود. پس این رمز‌گذاری تبدیل به سیگنالی برای اندام‌های تولید گفتار متکلم می‌شود، و او گفته‌ای را بیان می‌کند که دارای صورت آ‌وایی مناسب است، در عوض، اندام‌های شنیداری شنونده این صورت آوایی را دریافت می‌کند. اصوات گفتاری که این اندام‌های تولید گفتار متکلم می‌شود، و او گفته ای را بیان می‌کند که دارای صورت آوایی مناسب است.

در عوض ، اندامهای شنیداری شنونده این صورت آوایی را دریافت می‌کند. اصوات گفتاری که این اندام‌های شنیداری را تحریک می‌کنند، تبدیل به سیگنال عصبی می‌شود که از آن یک نمای آوایی حاصی می شود که معادل با آن نمایی است که متکلم پیام خود را در آن رمز‌گذاری کرده است. این نمای آوایی، توسط نظام قواعد زبانی شنونده به صورت همان پیام که متکلم در اول برای انتقال انتخاب آوایی، توسط نظام قواعد زبا نی شنونده، همان نظام قواعد را برای رمز‌گشایی انتخاب می‌کند که متکلم برای رمز‌گذاری بر می‌گزیند، پس نمونه ای از ارتباط زبانی موفق ایجاد می‌شود. ( کانز 1966 ، صص 103-104 )

تردیدی وجود ندار که این الگو بسیاری از افراد علاقمند به پدیدة‌ ارتباط در انسان را مجذوب و مسحور کرده است، و تا حدودی در زبان ما جایگیر شده است. برای مثال ، ردی (1979، صص 316-311 ) فهرستی از هشتاد استعاره را ارائه داده که براساس تصور زبان به منزلة‌ مجرایی برای اندیشه ها می باشد. در زیر برخی از این استعاره‌ها داده شده‌اند.




ارتباط مستقیم و تحت اللفضلی:

هنگامیکه به صورت مستقیم ارتباط برقرار می کنیم، فقط یک کنش ارتباطی انجام می دهیم، و هنگامیکه به صورت تحت اللفضلی سخن می گوییم، آنچه می گویم هماهنگ و سازگار با منظور ما است.

استراتژی مستقیم

اولین استراتژی ما، یعنی استراتژی مستقیم، شنونده را قادر می سازد تا از چیزی که متکلم بیان کرده و او شنیده است، استنتاج کند که متکلم به صورت مستقیم چه چیزی را می گوید.

(گام اول)

کردار زبانی

شنونده گفته ای را که متکلم بیان کرده، تشخیص می دهد.

اولین نقیصه الگوی پیام، ابهام دخیل در بود. الگوی پیام این حقیقت را در نظر نمی‌گیرد که گفته بیان شده ممکن است مبهم باشد و اینکه معمولاً از شنونده انتظار می‌رود (از سوی متکلم) که باند کدام معنا در آن موقعیت صحیح است. غالباً یک معنا از لحاظ بافتی نامناسب است، و فرض بر این خواهد بود که متکلم فقط معنای مناسب را مد نظر داشته باشد. برای مثال، جمله Give me a cheap gas can می تواند دارای معنای‌بالقوه:Give me a can for cheap gasیاGive me a gas can which is cheap باشد. ما معمولاً معنای دوم را در نظر می گیریم، چون از قوطی های یکسانی برای گازگران قیمت یا ارزان استفاده می شود.

بنابراین، شنونده با شنیدن لفظ باید تصمیم بگیرد که کدام معنای گفته همان معنای مورد نظر است.

(گام دوم)

معنای کاربردی

شنونده تشخیص می دهد کدام معنای گفته، همان معنای کاربردی در آن لحظه است.

حتی پس از اینکه شنونده لفظ را در بافت ابهام زدایی کرد، معمولاً کار دیگری قبل از تعیین آن کنش ارتباطی اجرا شده، باید از سوی شنونده باقی مانده باشد همچنانکه قبلاً ذکر شد، این کار مستلزم تعیین این موضوع است که متکلم به چه چیزی اشاره دارد. (البته اگر به چیزی اشاره داشته باشد).

این موضوع یک مشکل محسوب می شود، چون ارجاع به ندرت فقط با معنای گفته تعیین می شود. این موضوع روشن تر خواهد شد، اگر ما بخاطر بیاوریم که یک پیام غالباً در مورد شخص، مکان، یا چیزی خاصی در دنیای خارج است، اما معنای یک لفظ در زبان، به ندرت (اگر نگوییم هرگز) بطور دقیق مشخص می کند که ارجاع به کدام شخص، مکان، یا شیء بوده است.

در نتیجه گام بعدی استنتاج شنونده، همانا تعیین این خواهد بود که مورد اشاره متکلم کیست یا چیست.



خرید فایل


ادامه مطلب ...

بررسی میکروسکوپهای الکترونی و کاربرد آنها در علم پزشکی

بررسی میکروسکوپهای الکترونی و کاربرد آنها در علم پزشکی


مقدمه

پیدایش میکروسکوپ‌های الکترونی عبوری (TEM) به صورت تجاری به سال 1940 بازمی‌گردد، اما از سال 1950 به بعد بود که کاربردهای گسترده‌ای در بررسی فلزات پیدا نمودند. مهم‌ترین عامل کاهنده در کاربرد TEM مطالعه فلزات در آن سال‌ها به مشکلات تهیه نمونه مربوط می‌شد. اما امروزه با توجه به روش‌های گوناگون تهیه نمونه فلزات، این نوع میکروسکوپ‌ها جایگاه خاصی را در میان متخصصین مواد و متالوژی برای خود ایجاد نموده و باعث بروز نقطه عطف بسیاری از پژوهش‌ها و تحقیقات گشته، به آن‌ها سرعت فراوانی داده‌اند. امروزه میکروسکوپ الکترونی عبوری امکان مطالعه موارد متنوعی در مواد گوناگون نظیر ویژگی‌های ریزساختاری مواد، صفحات و جهات بلوری، نابجایی‌ها، دوقلویی‌ها، عیوب انباشتگی، رسوب‌ها، آخال‌ها، مکانیزم‌های جوانه‌زنی، رشدو انجماد، انواع فازها و تحولات فازی، بازیابی و تبلور مجدد، خستگی، شکست، خوردگی و … را فراهم آورده‌است. در کل قابلیت‌های امروزی TEM را می‌توان مرهون چهار پیشرفت زیر دانست که دوتای آن‌ها در ساختمان دستگاه و دوتای دیگر در نحوه تهیه نمونه حاصل شده‌اند:

- استفاده از چند عدسی جمع‌کننده

- پراش الکترونی سطح انتخابی

- نازک‌کردن نمونه‌ها برای تهیه نمونه‌های شفاف در برابر الکترون‌ها

- تهیه نمونه به روش ماسک‌برداری

در بررسی مواد، میکروسکوپ الکترونی عبوری دارای سه مزیت اصلی ذیل است:

1- قابلیت دسترسی به بزرگنمایی‌های بسیار بالا (حتی بیش از یک میلیون برابر) به دلیل به‌کارگیری انرژی بالی الکترون‌ها و در نتیجه طول موج کمتر پرتوها.

2- قابلیت مشاهد ساختمان داخلی فلزات و آلیاژها به دلیل قدرت عبور الکترون‌های پر انرژی از نمونه نازک.

3- قابلیت بررسی سطوح انتخابی نمونه به دلیل وجود حالت بررسی با پراش الکترون‌ها.

مقایسه TEM با OM

به طوور کلی میکروسکوپ الکترونی عبوری (TEM) مشابه میکروسکوپ نوری (OM) است با این تفاوت که در آن به جای نور با طول موج حدود Å 5000 از الکترون‌هایی با طول موج حدود Å 05/0 برای روشن کردن نمونه استفاده می‌شود. این امر به میکروسکوپ امکان می‌دهد که از نظر تئوری دارای قدرت تفکیک 105 با بهتر از میکروسکوپ نوری گردد. اما در عمل به علت محدودیت‌های مربوط به طراحی عدسی‌ها و روش‌های نمونه‌گیری، قدرت تفکیک تنها به Å 2 می‌رسد که به نسبتی در حدود 1000 مرتبه از قدرت تفکیک میکروسکوپ نوری بهتر است. در کارهای روزمره قدرت تفکیک TEM حدود Å 10 است. قدرت تفکیک زیاد میکروسکوپ عبوری در مقایسه با میکروسکوپ نوردی امکان کاربرد آن برای بررسی رزساختار فلزات را فراهم می‌سازد. زیرا امکان مشاهدة اجزای نمونه تا ابعاد اتمی را میسر می‌نماید.

این قدرت تفکیک مسلماً بدون زحمت و صرف وقت قابل دستیابی نیست، اما به‌هر حال در دسترس متالورژیست‌ها قرار دارد. بزرگنمایی زیاد نیز برای استفاده کامل از قدرت تفکیک میکروسکوپ ضروری است. با وجود این حتی با بزرگنمایی‌های حدود 1000 نیز نتایج TEM به مراتب روشن‌تر از نتایج میکروسکوپ نوری است. پرتوی روشن‌کننده در TEM الکترون و در OM، امواج نوری مرکب است. یک عدسی الکترونی ساده قادر است بزرگنمایی را حدود 50 تا 200 برابر افزایش دهد.

اجزای میکروسکوپ الکترونی عبوری TEM Parts

در شکل اجزای اصلی یک میکروسکوپ الکترونی عبوری نشان داده شده‌است. این طرح بنا به مورد کاربرد، به منظور به‌کارگیری انواع اثرات متقابل الکترون و نمونه اصلاح یا ترمیم‌شده و به تجهیزات کمکی و ویژه مجهز می‌گردد. همان‌طور که مشاهده می‌شود از اجزای اصلی یک دستگاه TEM، می‌توان تفنگ الکترونی، عدسی جمع‌کننده، ردیف‌کننده پرتو، نگهدارنده نمونه، عدسی شیئی، عدسی تصویری، سیستم‌های ازبین برنده آلودگی، پرده فلورسنت و دوربین عکاسی را برشمرد. کل سیستم در خلاء حداقل 4-10 تور قرار دارد تا مسیر آزاد طولانی برای الکترون‌ها موجود باشد. در شکل (3) نیز مسیر حرکت پرتوهای الکترونی نشان داده شده‌است.

تهیه نمونه Specimen Prparation

در صورت استفاده از میکروسکوپ تمیز و کارکرد خوب با آن، قدرت تفکیک قابل دسترس در کار متالورژی به شرایط نمونه بستگی خواهد داشت. در این راستا انتخاب روش تهیة نمونه از اهمیت فوق‌العاده‌ای برخوردار است. به طور کلی تهیة نمونه مشکل‌ترین قسمت متالوگرافی بوده و بیشتر از سایر مراحل کار در معرض خطا و نارسایی قرار دارد. در به‌کارگیری TEM در متالوگرافی، شیوه تهیه نمونه و ویژگی‌های نمونه آماده شده اهمیت و تأثیری مستقیم و شایان توجه بر نتایج ماخوذه دارد. در روش بررسی ساختار با میکروسکوپ الکترونی عبوری، ملموس‌ترین نوع نمونه، نمونه‌ای خیلی نازک است که الکترون قادر باشد از آن عبور نماید. در این راستا قدرت عبور الکترون از نمونه به ولتاژ شتاب‌دهندة پرتوها و نیز چگالی و عدد اتمی نمونه بستگی دارد. در جدول (1) تبعیت ضخامت نفوذپذیری یا عمق نفوذپذیری یا عمق نفوذ نمونه‌های مختلف با ولتاژهای متفاوت ارایه شده است. همان‌طور که ملاحظه می‌شود با افزایش ولتاژ شتاب‌دهنده، عمق نفوذ افزایش می‌یابد. از طف دیگر افزایش عدد اتمی منجر به کاهش عمق نفوذ می‌شود. جدول (1) : تأثیر ولتاژ شتاب‌دهنده و عدد اتمی بر عمق نفوذ الکترون.


جدول (1): تأثیر ولتاژ شتاب‌دهنده و عدد اتمی بر عمق نفوذ الکترون

عمق نفوذ (mm) عمق نفوذ (mm)

جنس نمونه

آلومینیم

آهن

اورانیم

عدد اتمی

13

26

92

در ولتاژ 100 کیلوولت

50/1

25/0

10/0

در ولتاژ 100 کیلوولت

8

5/1

5/0

نمونه‌هایی مناسب برای TEM بسته به عملکرد وسایل و ولتاژ کاری، ضخامتی در حدود چندصد نانومتر دارند. یک نمونه ایده‌آل ضخیم‌ترین حجم ممکن از نمونه را داشته، پایدا، تمیز و صاف می‌باشد. سطوح آن حتی‌الامکان موازی بوده و نمونه به راحتی در دست قرار می‌گیرد. به عبارتی حمل و نقل آسانی دارد. دارای هدایت الکتریکی مناسب بوده و از جدایش و عیوب سطحی مبری می‌باشد. بدیهی است تمام ویژگی‌های مذکور در یک نمونه اجتماع نداشته و سعی بر آن است که حداکثر فواید حاصل گردد. در روش‌های آماده‌سازی نمونه برای ‏TEM غالباً از یک نمونه لبه تیز (با زاویه کم) استفاده به عمل می‌آید. به‌طور کلی آماده‌سازی نمونه‌های TEM مشتمل بر دو مرحله آماده‌سازی اولیه نازک نمودن نهایی می‌باشد.

آماده‌سازی اولیه نمونه Initial Preparation

اولین گام در تهیه نمونه، بریدن یک تکه از نمونه اصلی است. در این خصوص لازم است که دیدگاه‌ها و نکات مورد مطالعه نیز مدنظر باشد. در مرحله اخیر به احتمال زیاد نمونه دارای حداقل دو سطح خشن بوده، ضخامت آن بسته به دستگاه و روش برشکاری است. یک ارٌه با دنده‌های ریز مو‌تواند زبری‌ها و حفراتی به اندازه حدود یک میلی‌متر بر روی ساختار نمونه فلز نرم ایجاد نماید. حداقل این عیوب در صورت استفاده از ماشین‌های برشکاری جرقه‌ای یا به کارگیری چرخ‌های برنده الماسه و یا سیم‌های گردان به همراه استفاده از دوغاب سایشی، حاصل می‌گردد. انتخاب روش برش نمونه به ویژگی‌های آن بستگی دارد.

آماده‌کردن سطوح صاف

بعد از این که ضخامت نمونه بریده شده به 5/0 تا 3 میلی‌متر رسید، لازم است که سطوح نمونه به صورت صاف و موازی درآیند. بدین منظور از ماشین‌های سنگ‌زنی، سنباده‌زنی و پرداخت‌کاری استفاده می‌شود. برای به حداقل رساندن عیوب ایجادی در سطح نمونه، استفاده از ساینده نرم و ریز دانه توصیه شده‌است. ورقه‌هایی از نمونه با سطوح موازی و به ضخامت m m 100 (و کمتر) در اکثر موارد با استفاده از پرداخت‌کاری با پودرهای ساینده‌ای با دانه‌بندی 600 بدست خواهدآمد. اگر تنها به نمونه‌ای پولکی شکل با قطر 2 میلی‌متر نیاز باشد، در شرایط صنعتی می‌توان از صفحات گردان استفاده به عمل آورد. با به‌کارگیری وسایلی دقیق‌تر و پیشرفته‌تر از این دست می‌توان به ضخامت‌هایی کمتر از m m 50 نیز دست یافت. با استفاده از چرخ‌های ساینده و پرداخت‌کاری این امر قابل حصول است.




خرید فایل


ادامه مطلب ...

بررسی کاربرد میکروسکوپ TEM

بررسی کاربرد میکروسکوپ TEM


مقدمه

نمونه های مناسب برای میکروسکوپ TEM بایستی بسته به ولتاژ بالای اعمالی ضخامتی در حدود چند صد نانومتر داشته باشند. یک نمونه ایده آل بایستی نازک باشد. نماینده عمق قطعه باشد، تمییز و صاف با دو سطح کاملاً موازی باشد به راحتی قابل حمل باشد، هادی بوده، عاری از جدایش (Segregation) سطحی باشد و Self-Supporting باشد. همه این خواسته ها همواره برآورده نمی شوند تکنیک های آماده سازی معمولاً مناجر به تولید نمونه گوه ای شکل می شوند که دارای یک زاویه کوچک گوه هستند.

آماده سازی نمونه می تواند نبه دو مرحله، آماده سازی ابتدایی و نازک سازی نهایی تقسیم شوند. آماده سازی اولیه از چند مرحله تشکیل شده که البته برخی از آنها می‌توانند حذف شوند.


آماده سازی اولیه نمونه

اولین گام در تهیه نمونه، بریدن یک تکه از نمونه اصلی است. در این خصوص لازم است که دیدگاه ‌ها و نکات مورد مطالعه نیز مد نظر باشد. در مرحله اخیر به احتمال زیاد نمونه دارای حداقل دو سطح خشن بوده، ضخامت آن بسته به دستگاه و روش برشکاری است. یک اره با دندانه های ریز می تواند زبری ها و حفراتی به اندازه حدود یک میلی متر بر روی ساختار نمونه فلز نرم ایجاد نماید. حداقل این عیوب در صورت استفاده از ماشین های برشکاری جرقه های یا به بکارگیری چرخ های برنده الماسه و یا سیم های گردان به همراه استفاده از دوغاب سایشی، حاصل می گردد.

انتخاب روش برش نمونه به ویژگی های آن بستگی دارد. در فصل دوم به انواع روش های برشکاری نمونه اشاره شده است.

آماده کردن سطوح صاف

بعد از این که ضخامت نمونه بریده شده به 5/0 تا 3 میلی متر رسید، لازم است که سطوح نمونه به صورت صاف و موازی درآیند. بدین منظور از ماشین های سنگ زنی، سنباده زنی و پرداخت کاری استفاده می شود. برای به حداقل رساندن عیوب ایجادی در سطح نمونه، استفاده از ساینده نرم و ریزدانه توصیه شده است. ورقه‌هایی از نمونه با سطوح موازی و به ضخامت 100 (و کمتر) در اکثر موارد با استفاده از پرداخت کاری با پودرهای ساینده ای با دانه بندی 600 بدست خواهد آمد. اگر تنها به نمونه‌ای پولکی شکل با قطر 3 میلی متر نیاز باشد، در شرایط صنعتی می توان از صفحات گردان استفاده به عمل آورد. با به کارگیری وسایلی دقیق تر و پیشرفته تر از این دست می توان به ضخامت هایی کمتر از 50 نیز دست یافت. با استفاده از چرخ های ساینده و پرداخت کاری این امر قابل حصول است.

نازک کردن شیمیایی Chemical Thinning

روشی که در آن می توان حداقل تخریب ها را در یک نمونه بدست آورد، پرداخت کردن شیمیایی است. با استفاده از این روش، برخی عیوب شناخته شده در مراحل مکانیکی آماده سازی نمونه تا حدودی از بین می رود، اما به دست آوردن سطوح موازی در نمونه مشکل به نظر می رسد. ماشین هایی که در آن با استفاده از فرآیندهای شیمیایی می توان ضخامت را کنترل نمود، در دسترس هستند. در این دستگاه ها هر دو سطح نمونه همزمان با یک محلول خورنده پرداخت می شوند. اگر ماده نمونه زیاد باشد، کل نمونه در محلول غوطه ور شده و هیچ تلاشی برای جلوگیری از خوردگی لبه‌ها صورت نمی گیرد. به عبارت دیگر نمونه به اندازه کافی خورده شده و پرداخت می‌شود. بنابراین با به کارگیری این روش نیازی به تهیه نمونه های اولیه بسیار کوچک نیست.

ساختن یک دیسک

بسیاری از روشهای اتوماتیک نیاز به یک نمونه دیسکی شکل به قطر 3 میلی متر (100/0 اینچ) دارند. یک چنین دیسکی براحتی قابل حمل است و بطور مستقیم در اکثر میکروسکوپها، حتی بدون گیره جاگیری می شود و همچنین پشتیبانی ساختاری خوبی را برای نازکترین قسمتهای قطعه مهیا می کند. گهگاهی ماده می تواند در ابتدا بصورت مفتولی به قطر mm3 (1/0 اینچ) آماده شود، نکه از آن دیسکهایی توسط ابزار برش الماسه ای جدا می شوند. اینچنین دیسک هایی معمولاص به ضخامت تقریباً 1 میلی متر (04/0 اینچ) خواهند بود و می توانند با روشهایی که در بالا پیش از نازک سازی نهایی تشریح شد نازکتر شوند.

اما معمولاً در وسط، دیسک بشقابی می شود تا ضخامت 1 میلی متر (04/0اینچ) را در لبه های خارجی تر (که حمل و نقل را توسط موچین آسان می کند) و کمتر از 100 میکرومتر را در مرکز داشته باشد.

بشقابی کردن (Dimoling) که زمان کمتری نسبت به نازک سازی نهایی نیاز دارد، می تواند بصورت مکانیکی با پرداخت الکتریکی و یا بمباران یونی انجام گیرد. نیازی نیست که این بشقاب سطح پویش شده بدون خدشه ای داشته باشد بنابراین فرآیند بشقابی کردن نیازی به کنترل دقیق به عنوان نازکسازی نمونه ندارد.

سریعترین روش تهیه یک دیسک 3 میلی متری (1/0 اینچی) پانچ کردن دیسک توسط یک دستگاه فلکه کاری شعبه ای با یک قطر داخلی 3 میلی متر (1/0 اینچ) می‌باشد. این روش برای فلزات شکل پذیر (Ductile) مناسب است نه برای مواد ترد. البته صدمات غیر منتظره امکان وقوع دارد بطور مثال گزارش شده است که دیسکهای فولادی ممکن است در قسمتهای بشقابی شده پس از پانچ شدن حاوی

باشند.

روشهای آرامتر و ظریفتر برای برش دیسک ها از ورقه ها زمان بیشتری نیاز دارد. رایجترین روشها شامل استفاده از یا برنده های می‌باشد.

نازک کردن نهایی نمونه Final Thinning

پرداخت الکتریکی Electropolishing

پرداخت الکتریکی یا الکتروپولیش اغلب برای رساندن ضخامت نمونه به ضخامت نهایی مورد استفاده قرار می گیرد. عملیات پرداخت الکتریکی در یک سلول حاوی الکترولیت که در آن نمونه در حالت آند قرار دارد، با اعمال یک پتانسیل مناسب برای حل کردن مقدار کنترل شده ای از نمونه، انجام می شود. این عمل تا ایجاد یک سوراخ در نمونه ادامه می یابد. محدوده عبور الکترون در TEM، نوار باریکی در محیط همین سوراخ است.

سلول پرداخت الکتریکی در واقع با حذف برجستگی ها و نامنظمی ها بسیار ریز سطح نمونه؟، آنرا پرداخت می نماید. این امر باعث صاف شدن سطح و در نهایت نازک شدن یکنواخت، کامل و سریع نمونه می شوند. مراحل گوناگون فرآیند در شکل ( ) ارایه شده است. پرداخت الکتریکی در واقع روشی عکس فرآیند آبکاری الکتریکی است. در این روش، قطعه مورد پرداخت، آند قرار داده می شود و لذا گرایش به حل شدن در الکترولیت دارد. الکترولیت و چگالی جریان طوری کنترل می‌شوند که اکسیژن آزاده شده در آند، نقاط برجسته قطعه را اکسید نماید. فلز اکسید شده در الکترولیت حل شده و در نتیجه سطحی صیقلی مانند صیقل کاری مکانیکی بدست می آید.

نازک کردن با پرتوی یونی Ion-Beam Thinning

نازک کردن با استفاده از پرتوهای یونی اغلب برای نازک کردن ورقه ها و رساندن آنها به ضخامت نهایی مورد استفاده قرار می گیرند. در این روش، یک پرتو از اتم ها یا یون های یک گاز خنثی مستقیماً به نمونه برخورد نموده و اتم ها یا مولکول هایی از نمونه در محل برخورد یون متصاعد می شوند. اگر این امر بتواند بدون تولید مواد مصنوعی و زاید انجام گیرد، نازک کردن یونی یک روش ایده ال برای آماده سازی ورقه های مواد هادی و غیر هادی خواهد بود.

این روش به پیش بینی و منظم نمودن چند اثر غیرقابل پیش بینی نظیر نشستن یون‌های پراکنده شده، توسعه توپوگرافی سطح زبر نمونه و گرم شدن نمونه نیازمند است. به همین دلیل لازم است که طبیعت یون ها، انرژی و جهت پیدایش آنها و نیز فرکانس ورودشان کنترل شود.

وقتی که یون ها دارای انرژی حدود ev100 باشند، می توانند اتم های سطحی را حذف نموده و پراکنده سازند. تعداد اتم های ساتع شده با برخورد هر پرتوی یون نیا اتم، بازده پراکنش (S) (Sputtering Yield) نامیده می شود. عموماً s و در نتیجه سرعت نازک شدن با انرژی یون و مقدار جرم یون بمباران کننده افزایش می یابد. از طرف دیگر مقدار s با افزایش جرم اتمی نمونه دچار کاهش می شود. حصول ضریب پراکنش بالا بدون تغییر شیمیایی نمونه با استفاده از آرگون امکان پذیر است. گازهای خنثای سبک تر تنظیم هلیم و نئون، سرعت نازک کردن بسیار آهسته تر و گازهای خنثای سنگین تر نظیر کریپتون و گزنون بسیار گران هستند.

انتخاب مقدار انرژی یون آسان است. مطابق شکل ( )، در ابتدا با افزایش انرژی یون، بازده پراکنش افزایش می یابد. اما پس از رسیدن به یک مقدار حداکثر، دوباره کاهش نشان می دهد. به عبارت دیگر یون ها در زیر سطح رسوب می کنند. در این حالت اتم های کمتری از سطح متصاعد می گردد. بنابراین مقدار انرژی بهینه در حدود kev10-1 می باشد که در این میان مقدار kev6-3 کاربردی تر است. از طرف دیگر بازده پراکنش به زاویه ای که یون ها به سطح برخورد می کنند، بستگی دارد. مطابق شکل ( ) زاویه معمولی مورد استفاده در محدود30-5 درجه می باشد.



خرید فایل


ادامه مطلب ...

بررسی آندوسکوپی و کاربرد آن

بررسی آندوسکوپی و کاربرد آن


تاریخچه آندوسکوپی

کلمه آندوسکوپ از 2 کلمه یونانی به معنای « درون » و « دیدن » تشکیل شده است . عبارت endoscopy به معنای استفاده از تجهیزات برای معاینه درون ارگان های حفره مانند بدن به صورت دیداری است . در علم پزشکی از دیر باز تمایل و رغبت برای دیدن اجزای درون بدن نیروی محرکی بوده است تا بدان وسیله بتوان به بیماران کمک کرد . در کنار جراحی باز ، این روش معاینه و جراحی با کمترین تهاجم به بدن ، روشی ظریف و استادانه و ماهرانه البته با کمترین مشکل برای بیمار محسوب می شود .

طبیعت راه رسیدن به این هدف را فراهم آورده است . دستیابی به درون ، از طریق حفرات و سوراخ های بدن انسان امکان پذیر است .

برای اولین بار در سال 1868 ، آدولف کاسمال با وارد کردن لوله ای غیر قابل انعطاف به داخل معده یکی از بیماران خود آندوسکوپی (gastrointestinal) Gl را پایه گذاری کرد . در سال 1881 پزشک اتریشی آقای johann bonmilulioz به دنبال تحقیقات صورت گرفته با همکاری صنعتگران معروف آن زمان مبادرت به اختراع اولین گاستروسکوپ نمود که انتهای دیستال آن (distal tip) نوری داشت که توسط لامپ پلاتینی تامین می شد در ادامه تحقیقات ارزشمند جهت ساخت اولین گاستروسکوپ جایگزینی فرم خاصی از لامپ ادیسونی به لامپ پلاتینی نیز مورد بررسی قرار گرفت . در سال Elsner گاستروسکوپ غیر قابل انعطافی را عرضه نمود که از سیستم لنزی بهره مند بود . به همین سبب امکان استفاده از نوک ابزار دستگاه به صورت لاستیکی میسر و به تبع آن صدمات به حداقل می رسید .

امروزه در مسیر پیشرفت و تکامل علم آندوسکوپی از سیستم های نور پیشرفته ای برای انتقال تصاویر و همچنین انتقال نور و روشنائی بهره گرفته می شود و این در حالی است که حدود 100 سال پیش انتقال تصویر حتی بدون استفاده از لنز و تنها با استفاده از یک تیوپ صورت می گرفته است .

اگر چه ساخت آندوسکوپ های نیمه انعطاف پذیر تحول بزرگ در سیر مراحل تکامل آندوسکوپ ها بود اما عدم توانائی آن ها در برداشتن نمونه های بیوپسی و محدودیت دید تمامی زوایا باعث گردید تا آندوسکوپ های فیبر نوری ارایه شوند . در سال 1965 تیم تحقیقاتی متشکل از Curtis , Hirschowitz موفق شدند اجزاء فیبروسکوپ را مهیا کنند ولی تنها مشکلی که در این زمینه وجود داشت کیفیت پایین دسته فیبرهای نوری بود که به دلیل نشت نور بین پرتو ها به وجود می آمد .

با استفاده از پوشش شیشه ای با ضریب شکست کمتر این مشکل نیز تا حدی
مرتفع گردید و بدین ترتیب اولین فیبروسکوپ در سال 1957 به جامعه پزشکی عرضه شد .

در حال حاضر از آندوسکوپ ها نه تنها در درمان بیماری ها و نه تنها در علم پزشکی بلکه در علم مکانیک ( دیدن اجزا و قطعات درون ماشین آلات مختلف ) و باستان شناسی ( نگاه کردن به سازه های درونی کلیساهای قدیمی با استفاده از تلسکوپ آندوسکوپ ها ) نیز استفاده می شود .


منابع نور

در گذشته منبع نور مورد استفاده در آندوسکوپی ، لامپ های تصویر تنگستن بودند که بر سر تلسکوپ گذاشته شده و به داخل بدن فرستاده می شد ، چون این لامپ ها از ابتدا به منظور خاص آندوسکوپی طراحی آن ها هدر می رفت یا به اصطلاح گم می شد و دلیل آن هم این بود که نقاط نورانی خروجی از لامپ (outpur spot) از نظر اپتیکی با ناحیه فعال الیاف فیبر نوری همخوانی کافی نداشتند . به علاوه نور لامپ های تنگستن زرد رنگ است و این موضوع روی ظاهر رنگ بافت تاثیر می گذارد که این پدیده هم به نوبه خود می تواند ظاهر منطقه ملتهب را عوض کند .


منابع نور با شدت پایین ( منابع نور آزمایشگاهی ) و منابع نور با شدت بالا

یک منبع نور استفاده شده برای آندوسکوپی بایستی شرایط زیر را دارا باشد .


1 ـ روشنائی کافی که بتواند میدان دید را به خوبی روشن کند و همچنین خلوص رنگ بالا که از طریق آن بتوان به معاینات و جراحی های آندوسکوپی در نقاط ظریف و حساس بدن پرداخت .

2 ـ تشعشع مادون قرمز که منجر به انتقال حرارت تشعشعی به داخل حفرات بدن می شود تا حد امکان حداقل گردد ( این تشعشعات ممکن است منجر به سوختن بافت در محل تماس با آن شود )

3 ـ الکتریکی منابع تغییر مبدل ها بایستی از پرسنل اتاق عمل کاملا ایزوله شده باشند طوری که هیچ گونه ارتباطی در این بین برقرار نباشد .

4 ـ فن های استفاده شده برای کاستن حرارت نبایستی حجم خیلی زیادی از فضا را اشغال کنند طور که باعث ایجاد اغتشاش (tubulence) و نویز و سر و صدای اضافی بشوند .

با پیشرفت علم آندوسکوپی تقاضای فرایند هایی برای استفاده از منابع نور با شدت بالا صورت گرفت . این منابع امروزه به طور وسیعی در موارد زیر استفاده می شوند :

1 ) اعمال جراحی که در آن ها از آندوسکوپی فیبرنوری از نوع Flexble ( انعطاف پذیر ) استفاده می شود .

2 ) اعمال جراحی که در آن ها از فیبر های نوری انعطاف پذیر با اتصالات مورد نیاز برای مقاصد آموزشی استفاده می شود .

3 ) کـاربردهای مستند سازی که ممکن است به صورت سینماتوگرافی یا تلویزیونی باشد .

برای منابع نوری از لامپ های مختلفی مانند گزنون ، کوارتز ، هالوژن ، بخار جیوه و غیره استفاده می شود .

لامپ های هالوژن دارای توان 150 وات هستند و نور زدی ایجاد می کنند و برای حالت استفاده با چشمی مناسب هستند لامپ های metal ، توانی تا حد 250 وات ایجاد می کنند و نور آن ها سفید است . لامپ های زنون توان در حدود 300 وات ایجاد می کنند که این مورد آخر بیشتر در آندوسکوپی قفسه سینه و اطراف قلب که رگ های خونی فراوانی وجود دارند استفاده می شود . زیرا خون تیره رنگ بوده و برای دیدن این نواحی ، باید از منبع نور با توان بالا استفاده شود .

این منابع نور کوچک و فشرده می توانند میدان دید حدود 70 درجه را در فیبرهای اپتیک به وجود آورند .

نور از طریق فیبر نوری از منبع نور سرد به تلسکوپ یا فیبروسکوپ منتقل می شود . علت این که به این منبع نور ، واژه سرد اطلاق می شود آن است که نور در محل دیگری ایجاد می شود و از طریق فیبر به محل منتقل می شود ، بنابراین نور مربوطه گرمائی ندارد .این منابع دو وظیفه اصلی بر عهده دارند . وظیفه اول این منابع تامین انرژی روشنائی مناسب برای انتقال داخل بدن و دوم تامین هوای فشرده مناسب و نیز هدایت آب و هوای فشرده به سر فیبروسکوپ به منظور شستشوی لنزهای انتهائی دستگاه می باشد در یک تقسیم بندی منابع نور سرد بر اساس لامپ استفاده شده در آن ها تفکیک و مشخص می شوند که در قسمت قبل توضیح داده شد .

بافت مورد نظر که توسط آندوسکوپ دیده می شود 2 خاصیت مهم جذب (absorption) و پراکندگی ( Scattering ) را در مقابل نور از خود نشان می دهد :

(Absorption) : تبدیل انرژی مکانیکی به گرمائی هنگام عبور نور از بافت را گویند که علت آن نزدیکی ملکول ها کنار همدیگر و اصطکاک آن هاست .

( Scattering ) : وقتی نور به ذرات بافت برخورد می کند ، اگر ذرات نسبت به طول موج دارای ابعاد کوچک تری باشند هر کدام از آنها پرتو را گرفته و خود را مثل یک منبع تولید نور عمل کرده ، به کلیه جهات انرژی می فرستند . این پدیده در داخل هر بافت اتفاق می افتد نه در مرز مشترک بین دو بافت . پس پراکندگی در تمام جهات رخ می دهد هر دو این خاصیت ها به رنگ نور تابیده شده و طول موج آن بستگی دارند . خون ، طول موج های مربوط به رنگ های آبی و سبز را به شدت جذب می کند به همین دلیل تصویر حاصل از آندوسکوپی ، هنگامی که در بافت خونریزی اتفاق افتاده باشد ، تیره می گردد . همچنین هنگام انجام عمل سیستوسکوپی ( معاینه مثانه ) در مثانه ای که از مایع شستشو پر شده است اغلب داخل مثانه تیره و تار به نظر می رسد که علام Scattering شدید نور تابیده شده است .

ساختار برنامه دستگاه SOFTWARE STRUCTUR

READY MODE :

بعد از هر کالیبراسیون ، انجام محاسبات روی نمونه های گاز یا خون ، انجام محاسبات کنترل کیفیت ، راه اندازی دستگاه ، STANDBY پروتئین زدائی ، تخلیه DECONTAMINATION ، پاکسازی CLEANING ، پر کردن مجدد لوله ها TUBING REFILL تنظیمات LS و راه اندازی مجدد آنالایزر ، دستگاه به حالت READY در خواهد آمد .

MENU SOFTKEY :

استفاده از این شاسی ها هر گاه دستگاه در حالت READY بوده و یا کاربرد برنامه های ذیل ( کالیبراسیون ـ برنامه ریزی اطلاعات DATA MANAGEMENT نگهداری ـ UTILTIES ) مقدور باشد ممکن است . هر یک از برنامه های فوق خود مرکب از چند برنامه می باشد .

CALIBRATION :

CAL 1 – موجب آغاز یک برنامه کالیبراسیون خارج از نوبت با PH در یک نقطه PCO2 در دو نقطه و PO2 در یک نقطه می گردد .

CAL 2 – موجب آغاز یک برنامه کالیبراسیون خارج از نوبت با PH در دو نقطه PCO2 در دو نقطه و PO2 در یک نقطه می گردد .

TOTAL CAL – موجب آغاز یک برنامه کالیبراسیون کلی می گردد .

کالیبراسیون های دیگر شامل کالیبراسیون گاز در 1 یا دو نقطه می باشند که می توانند بدلخواه اپراتور براه بیافتند .


DATA MANAGEMENT :

شامل :

A – بایگانی اطلاعات بیمار ( PATIENT REPORTS LOG ) ( مرکب از بایگانی LOG و برنامه محاسبات خاص می باشد )

B – بایگانی کالیبراسیون CALIBRATION

C – بایگانی وضعیت سیستم SYSTEM STATUS

D – DISK OPERATION - ( فقط در صورتیکه DISK بر روی دستگاه نصب و راه اندازی شده باشد ) .

اطلاعات بطور اتوماتیک در بایگانی های مربوطه پس از هر پروسه ضبط میگردد .

MAINTENANCE :

A – اگر چه پس از هر کالیبراسیون ، محاسبات و غیره عمل شستشو صورت می گیرد ، لیکن میتوان بطور دلبخواه نیز دستگاه را شستشو ( RINSE ) نمود .

B - برنامه پاکسازی CLEANING – هم بصورت دستی مقدور بوده و هم با برنامه ریزی .

C – برنامه پروئین زدائی ( PROTEIN REMOVAL ) – جهت تمیز نمودن مجاری انتقال مایع از رسوبات لیپید ( LIPID ) و پروتئین تهیه و تنظیم گردیده .

D – DECONTOMINATION – این برنامه جهت پاکسازی مسیرهای عبور مایع قبل از نصب یا تعویض الکترودها و یا لوله های پمپ مورد استفاده قرار می گیرد .

E - برنامه حفاظت و نگهداری دیگر موجود عبارتند از :

پر کردن مجدد لوله ها ( TUBING REFILL) و تنظیم سنسورهای مایعات
( LS ABJUSTMENT ) .

UTILIES :

A – STANDBY : جهت خاموش کردن موقت ABL 500 مورد استفاده قرار می گیرد .

B – PRINT : جهت دریافت چاپ از اطلاعات ABL مورد استفاده قرار می گیرد ( در صورتکیه در برنامه SETUP شاسی چاپ انتخاب نشده باشد ) .

C – SEND : جهت ارسال اطلاعات به کامپیوتر دیگر مورد استفاده دیگر قرار می گیرد ( در صورتیکه شاسی SEND توسط برنامه SET UP انتخاب نشده باشد ) .

D – OTHER UTILITIES : ( برنامه های جانبی دیگر ) شامل برنامه SET UP
( مرکب از 19 برنامه ) و برنامه سرویس که فقط میبایست توسط متخصصین مجاز مورد استفاده قرار گیرد می باشد .

SYSTEM STATUS :

( وضعیت سیستم ) – شامل اطلاعات ضبط شده زیر می باشد :

پیغامهای اپراتور OPERATOR RECORDS

پیامهای در ارتباط با نمونه SAMPLE RECORDS

پیامهای در ارتباط با ترانسدوسر TRANSDUCERS RECORD

از آخرین شستشو – از آخرین کالیبراسیون – از آخرین محاسبات

پیامهای سیستم SYSTEM RECORDS :

عمومی ـ از آخرین کالیبراسیون ـ از آخرین محاسبات

دکمه مربوط به وضعیت سیستم ( SYSTEM STATUS SOFTKEY ) تنها در صورتی مورد خواهد بود که وضعیت پیامی در این ارتباط وجود داشته باشد .

INSTRUMENT STATUS – ( وضعیت دستگاه ) :

مربوط به یکی از اعمال زیر می گردد که در قسمت INSTRUMEN STATUS روی خط شماره یک صفحه مانیتور نمایان می شود .

START UP : برنامه START UP بعد از روشن شدن ABL 500 اجرا می گردد .

READY : هنگامی روی صفحه ظاهر می شود که ABL 500 آماده برای انجام محاسبات آماده است .

MEASURMENT : هنگامی روی صفحه ظاهر می شود که دستگاه مشغول انجام محاسبات روی نمونه خون و یا گاز و یا محلول های کنترل می باشد .

FLUSH : هنگامی روی صفحه ظاهر می شود که محفظه های اندازه گیری
( MEASURING CHAMBER ) پس از برنامه GAS CAL CHECK توسط یک برنامه شستشوی مختصر تمیز می شوند . ( در حال یکه دستگاه در وضعیت READY قرار دارد چنانچه پس از 60 دقیقه هیچگونه محاسبه یا کالیبراسیونی صورت نگیرد یک FLUSH صورت می گیرد . )

( TOTAL CAL – CAL 1 – CAL 2 – GAS CAL - GAS CAL 2 ) : هر یک از اینها به هنگام انجام کالیبراسیون مختص خود روی صفحه ظاهر می گردد .

( RINSE – CLEANING – PROTEIN REM – DECONTAMINATION – REFILL – LS ADJUST ) :

هر یک از اینها به هنگام اجراء برنامه حفاظت و نگهداری مختص خود روی صفحه ظاهر می گردد .

STANDBY : وقتی که ABL 500 در حالت STANDBY می باشد روی صفحه ظاهر می گردد .

CAL PENDING : بمدت 10 دقیقه پس از خروج از برنامه STANDBY روی صفحه ظاهر می ماند .

HOLD : هر گاه دستگاه در حالت HOLD باشد بر روی صفحه نمایان می شود . ABL 500 بدلایل زیر به حالت HOLD خواهد رفت .

الف ـ برداشتن مادول ورودی

ب ـ برداشتن در پوش مجرای ارائه نمونه و یا در پوش قسمت THERMOSTATTING .

ج ـ فشار دکمه HOLT ANALYZER خارج می شود روی صفحه ظاهر می شود .

RINSE ERROR : هنگامیکه ظرف حاوی محلول شستشو خالی بوده و یا اشکالی در مسیر RINSE قرار داشته باشد روی صفحه ظاهر می شود .

POWER ON : بعد از پیام START UP زمانیکه کنترل RAM ها و ROM ها به پایان رسیده نمایان می گردد .

LOADING : در طول مدت برنامه START UP زمانیکه برنامه های مربوط به قسمت مرطوب دستگاه در حال خوانده شدن هستند روی صفحه نمایان می باشد .


وضعیت کار دستگاه ( OPERATING STATUS )

عبارت از آغاز یک عملیات پس از فشار یک دکمه و یا باز نمودن در پوش ارائه نمونه توسط اپراتور می باشد . بعضی اوقات مولفه های دستگاه
( INSTRUMENT STATUS ) باعث تغییر طرز کارا ( OPERATING STATUS ) می گردند بعنوان نمونه صفحه مشخصات در پایان انجام محاسبات به صفحه نتایج تغییر می یابد .


START UP ( راه اندازی ) ABL 500

به هنگام خاموش شدن ( SWITCHED OFF ) ، دستگاه اطلاعات زیر را خود ذخیره می نماید .

- برنامه SET UP سیستم که عبارت از برنامه SERVICE اطلاعات
BACK GROUND دستگاه می باشد .

- QC STATISTIC , QC PLOT , QC LOG

- اطلاعات مربوط به WARM START UP ( آخرین داده های کالیبراسیون )

- برنامه حفاظت و نگهداری زمانبدی شده و برنامه پروتئین زدائی زمانبندی شده .

- سطح مایعات

- بایگانی وضعیت سیستم SYSTEM STATUS LOG

- هنگامی که دستگاه ABL 500 روشن می گردد می تواند هر یک از برنامه های COLD START UP و یا WARM START UP را آغاز نماید .

- COLD STARTUP ـ در صورتی می بایست انتخاب شود که یکی و یا بیشتر از شرایط زیر برقرار باشد .

- دمای قسمت THEPNMO STATTING خارج از محدوده 36.8 – 37.2 درجه سانتیگراد باشد .

- اطلاعات موجود در برنامه USER SETUP یا برنامه SYSTEM SETUP نامعتبر باشد SCREEN نمایان باشد .

- اطلاعات داخلی مربوط به QC PLOT , QC LOG نامعتبر باشد ـ مثلاً پیغامی وجود نداشته باشد .

- در صورتیکه اطلاعات موجود در برنامه USER SETUP و یا SYSTEM SETUP نامتعبر باشند صفحه ( SCREEN ) زیر نمایان خواهد بود .




خرید فایل


ادامه مطلب ...

کاربرد بتن خود تراکم

کاربرد بتن خود تراکم

مقدمه:

سالهای زیادی است که از بتن بعنوان یک ماده ساختمانی مهم و با تحمل فشارهای بالا جهت ساخت و ساز انواع سازه‌ها استفاده می‌شود. ضعف این ماده مهم و پر مصرف ساختمانی در مقابل کشش با قرار دادن آرماتور تا حد زیادی جبران شده است. در سالهای اخیر و با بررسی دوام سازه‌های بتنی مسلح بویژه در مناطق خورنده و سخت برای بتن نظر اکثر کارشناسان و دست‌اندرکاران کارهای بتنی به این مسأله جلب شده است که مقاومت به تنهایی نمی‌تواند جوابگوی کلیه خواص مربوط به بتن بخصوص دوام آن باشد و لازم است در طراحی بتن برای مناطق مختلف علاوه بر مسأله مقاومت و تحمل بارها در طول مدت بهره‌دهی، پایایی و دوام آن نیز مد نظر قرار گیرد. در حال حاضر با اضافه نمودن مواد مختلف بتن و تغییرات در طرح اختلاط می‌توان به بتن‌هایی دست یافت که بدون تغییر قابل ملاحظه در مقاومت آنها از نقطه نظر دوام به بتن‌هایی با دوام بالا دست یافت.

مسأله محیط زیست وآلودگی آن نیز در سالهای اخیر نظر جهانیان را بخود معطوف ساخته است. کاربرد مواد و مصالحی که در ساخت آن آلودگی کمتری به محیط منتقل گردد و همچنین برداشت مصالح طبیعی که کمتر محیط را تخریب نماید، مورد توجه خاص قرار دارد. در این راستا محدودیت کاربرد سنگدانه‌ها، دستیابی به مواد جدید و نیز استفاده از مواد زائد کارخانه‌ها و آلاینده‌های محیط زیست در بتن در رأس برنامه‌های تحقیقاتی پاره‌ای از کشورهای جهان قرار گرفته است.

علاوه بر خود بتن و مصالح تشکیل‌دهندة آن در سالهای اخیر بر روی آرماتور مصرفی در سازه‌های بتنی مسلح نیز تحولاتی صورت گرفته است. بعنوان مثال و برای پرهیز از خطر خوردگی آرماتور، از فولادهای ضد زنگ و نیز آرماتورهای ساخته شده با الیاف‌ مختلف پلاستیکی و پلیمری در محیط‌های بسیار خورنده استفاده می‌شود. کار بر روی عملکرد دراز مدت چنین موادی هنوز ادامه دارد.

صنعت scc ابتدا درژاپن تولید وهم اینک در بسیاری از کشورهای جهان مورد استفاده¬¬¬¬¬¬.آزمایش و بررسی میباشد . این صنعت هم به صورت بتن درجا وهم به صورت بتن پیش ساخته کاربرد وسیعی دارد .

تعاریف :

•قابلیت روانی: توانایی scc برای جاری شدن و عبورازبین فضاهای کوچک شبکه آرماتور بدون توقف ویا جداشدگی.

قابلیت پراکندگی:توانایی sccبرای برای جریان و پر کردن تمام فضاهای قالب تحت اثر وزن خود .

مقاومت در اثر جداشدگی دانه بندی:توانایی scc برای یکنواخت و هموژن ماندن در طول حمل. قالب ریزی و ...

کارایی:میزان راحتی بتن تازه برای قالب ریزی و فشرده شدن. این این موضوع وجه مختلف چسبندگی انتقال و فشردگی را در بر میگیرد .

بتن خود تراکم(scc) :بتنی است که توانایی جریان تحت اثر خویش را داردو بطور کامل و بدون نیاز به ویبره و حتی تحت تراکم شدید آرماتور در قالب جای گرفته بطوریکه در کلیه مراحل یکنواختی خود را حفظ نماید.

(معرفی بتن خودتراکم (SCC) و تحقیقات انجام شده در مورد آن در ایران){3}

بتن خودتراکم ((Self Compacting Concrete یک فن آوری نوپا در عرصه ساخت و ساز دنیاست. این نوع بتن که کارایی بسیار بالایی دارد میتواند تحت اثر وزن خودش و بدون جداشدن دانه ها در میان انبوه اجزای سازه ای جریان یابد. به عبارت دیگر این نوع بتن بدون نیاز به لرزاننده (ویبره) و به خاطر وزن خودش متراکم میشود. با توجه به فراگیرشدن این صنعت در دنیا و روی آوردن دست اندرکاران عرصه ساخت و ساز به استفاده از بتن خودتراکم، بر آن شدیم تا در طی یک روند ادامه دار به معرفی و ذکر نتایج تحقیقات انجام شده در مورد آن بپردازیم.

بخش مهندسی عمران دانشگاه شهید باهنر کرمان اولین تجلی گاه جدی ظهور بتن خودتراکم در ایران است. تحقیقاتی که توسط دانشجویان کارشناسی ارشد و زیر نظر دکتر مقصودی عضو هیئت علمی این بخش صورت گرفته و میگیرد شایان توجه و قابل تحسین است. در ادامه اولین فصل از این مقوله که به معرفی بتن خودتراکم اختصاص دارد میپردازیم.

تاریخچه :

برای ایجاد سازه های بتنی بادوام، به تراکم کافی تأمین شده توسط نیروی کار ماهر نیاز است. بحران کاهش نیروی کار ماهر در صنعت ساخت و ساز ژاپن در اوایل دهه 80 میلادی از یک سو، تراکم نامناسب ناشی از افزایش حجم آرماتورهای مصرفی به منظور بهبود عملکرد سازه ای و همچنین تمایل به استفاده از آرماتورهای با قطر کمتر به منظور کنترل ترک خوردگی از طرف دیگر باعث کاهش کیفیت کارهای اجرائی انجام گرفته گردید[1]. این موضوع برای چندین سال مورد بحث و بررسی قرار گرفت تا اینکه نظریه بتن خودتراکم (Self Compacting Concrete) به عنوان راه حلی برای رفع مشکل دوام سازه های بتنی توسط Okamura در سال 1986 مطرح گردید[1].

بتن خودتراکم (SCC)، بتنی است که تحت اثر وزن خود متراکم شده و نیاز به هیچ لرزاننده ای (ویبره) برای ایجاد تراکم ندارد. این مسأله باعث صرفه جویی اقتصادی و کاهش زمان ساخت و ساز و در نتیجه بالارفتن راندمان نهایی می شود. بتن خودتراکم با عمر کمتر از 20 سال زمینه‌ساز حل بسیاری از مشکلات سازه های بتنی به خصوص در مقاطع با تراکم زیاد میلگرد گردیده است. از دیگر خصوصیات ویژه این بتن میتوان به کارایی بالا، مقاومت زیاد در برابر جداشدگی و تسریع در عملیات ساخت و ساز اشاره کرد. چنین مشخصاتی باعث شده است تا کاربرد آن به خصوص در اعضا با تراکم بالای آرماتور روز به روز بیشتر گردد.

نوع فایل: word

سایز:29.1 KB

تعداد صفحه: 55



خرید فایل


ادامه مطلب ...

بررسی کاربرد ترانسفورماتورها در انتقال انرژی برق

بررسی کاربرد ترانسفورماتورها در انتقال انرژی برق


پیشگفتار :

پیدایش ترانسفورماتور در صنعت برق دو تحول عمده در این صنعت بوجود آورده است :

1- ارتباط سراسری میان شبکه های مصرف و تولید در سطح یک یا چند کشور

2- امکان طراحی وسایل الکتریکی با منابع تغذیه دلخواه.

گستردگی منابع انرژی در سطح هر کشور و مقرون به صرف بودن تاسیس نیروگاههای برق در نزدیکی منابع انرژی ، همچنین ضرورت تعیین محلی خاص برای احداث سدها سبب می شود که هنگام انتقال انرژی الکتریکی با ولتاژ پایین ، تلفات زیادی در انرژی تولید شده به وجود آید. بنابراین ، یا باید نیروگاههای برق ، محلی طراحی شوند یا به دلیل پایین بودن بازده اقتصادی از احداث آنها صرفنظر شود. بهره گیری از ترانسفورهای قدرت موجب افزایش ولتاژ جریان انتقال و کاهش تلفات انرژی به مقدار زیاد می شود، در نتیجه :

1- مشکل انتخاب محل نیروگاه را بر طرف می کند.

2- ایجاد شبکه سراسری را میسر می سازد.

3- مدیریت بر شبکه مصرف و تولید را به مراتب گسترش می دهد

از سوی دیگر کاهش ولتاژ جریان متناوب شبکه با استفاده از ترانسفورماتور امکان طراحی وسایل الکتریکی ، الکترونیکی ، صوتی ، تصویری و سیستم های کنترل را با هر ولتاژ لازم فراهم می آورد . همچنین به علت طراحی مدارهای فرمان الکتریکی با ولتاژ کمتر، ایمنی تکنیسینها و کارگران فنی مربوطه در هنگام کار افزایش می یابد.


اصول و طرز کار ترانسفورماتور

ترانسفورماتور دستگاه استاتیکی ( ساکن ) است که قدرت الکتریکی ثابتی را از یک مدار به مدار دیگر با همان فرکانس انتقال می دهد . ولتاژ در مدار دوم می تواند بیشتر یا کمتر از مدار اول بشود، در صورتیکه جریان مدار دوم کاهش یا افزایش می یابد.

بنابراین اصول فیزیکی ترانسفورماتورها بر مبنای القاء متقابل می باشد که بوسیله فوران مغناطیسی که خطوط قوای آن اولیه و ثانویه را قطع می کند، ایجاد می گردد.

ساده ترین فرم ترانسفورماتورها بصورت دو سیم القائی است که از نظر الکتریکی از یکدیگر جدا شده هستند ولی از نظر مدار مغناطیس دارای یک مسیر با مقاومت مغناطیس کم می باشد .

هر دو سیم پیچ اولیه و ثانویه دارای اثر القایی متقابل زیاد می باشند . بنابراین اگر یک سیم پیچ به منبع ولتاژ متناوب متصل شود، فلوی مغناطیسی متغیر بوجود خواهد آمد که بوسیله مدار مغناطیسی ( هسته ترانسفورماتور که از یکدیگر عایق شده اند ) مدارش بسته شده و در نیتجه بیشتر فلوی مغناطیسی مدار ثانویه را قطع نموده و تولید نیروی محرکه التریکی می نماید. ( طبق قانون فاراده نیروی محرکه القاء شده ) . اگر مدار ثانویه ترانسفورماتور بسته باشد یک جریان در آن برقرار می گردد و می توان گفت که انرژی الکتریکی سیم پیچ اولیه ( بوسیله واسطه مغناطیس ) تبدیل به انرژی الکتریکی در مدار ثانویه شده است .

تعریف مدار اولیه و ثانویه در ترانسفورماتور.

بطور کلی سیم پیچ که به منبع ولتاژ متناوب متصل می گردد را سیم پیچ اولیه یا اصطلاحاً «طرف اول » و سیم پیچی که این انرژی را به مصرف کننده منتقل می کند ، سیم پیچ ثانویه « طرف دوم » می نامند .

حال می توان بطور کلی مطالب فوق را بصورت زیر جمع بندی نمود:

بنا به تعریف ترانسفورماتور وسیله ایست که :

1- قدرت الکتریکی را از یک مدار به مدار دیگر انتقال می دهد. بدون آنکه بین دو مدار ارتباط الکتریکی وجود داشته باشد.

2- در فرکانس مدار هیچگونه تغییری ایجاد نمی نماید.

3- این تبدیل بوسیله القاء الکترومغناطیسی صورت می گیرد.

4- در صورتیکه مدار اولیه و مدار ثانویه بسته باشند ، این عمل بصورت القای متقابل و نفوذ در یکدیگر صورت می گیرد.

ساختمان ترانسفورماتور :

اجزای یک ترانسفورماتور ساده عبارتند از :

1- دو سیم پیچ که دارای مقاومت اهمی و سلفی می باشند.

2- یک هسته مغناطیسی .

3- قسمتهای دیگری که اصولاً مورد لزوم می باشند عبارتند از :

الف : یک جعبه برای قرار دادن سیم پیچ ها و هسته در داخل آن

ب : سیستم تهویه – که معمولاً در ترانسفورماتورهای با قدرت زیاد، علاوه بر سیستم تهویه می یابد مخزن روغن نیز برای خنک کردن بهتر کار گرفته شود.

ج : ترمینالهایی که باید سرهای اولیه و ثانویه روی آنها نصب شود.

خصوصیات هسته مغناطیسی :

در تمام انواع ترانسفورماتورها هسته از ورقه های ترانسفورماتور ( ورقه های دینامو ) ساخته می شود که مسیر عبور فوران مغاطیسی را با حداقل فاصله هوایی ایجاد نماید و جنس آن از آلیاژ فولاد می باشد که مقداری سیلیس به آن اضافه گردیده است.

با فعل و انفعالاتی که در متالوژی بر روی این نوع فولاد انجام می شود وعملیات حرارتی که صورت می گیرد سبب می شود که پر می ابلیته ( قابلیت هدایت مغناطیسی ) هسته بالا رفته و به عبارت دیگر تلفات هیستر زیس کاهش می یابد و بطور کلی مقاومت مغناطیسی کوچک می گردد.

از طرف دیگر برای کاهش تلفات ناشی از جریان گردابی فوکو هسته ترانسفورماتورها را به صورت ورقه می سازند و اصولاً یک طرف این ورقه ها را با ماده ای که بتواند فوران مغناطیسی را عبور دهد ولی عایق جریان الکتریکی باشد، می پوشانند و بنابراین این ورقه ها باید به ترتیبی چیده می شوند که از یکدیگر عایق الکتریکی باشند.

معمولاً ضخامت ورقه های هسته ترانسورماتورها در فرکانس 50 تا 25 بین 35/0 تا 50/0 میلیمتر می باشد.

این ورقه ها پهلوی هم قرار می گیرند. و اصولاً مقدار آن محاسبه می گردد. همانطوریکه در این شکل مشاهده می شود ، با قرار گرفتن ورقه ها بر روی یکدیگر بین آنها فاصله هوایی بوجود می آید و در نتیجه در سطح مقطع هسته همیشه یک شکاف وجود دارد که اجتناب ناپذیر است .

انواع هسته های ترانسفورماتور

ساختمان هسته ترانسفورماتورهای معمولی بدو صورت کلی ساخته می شوند.

الف : هسته نوع معمولی

ب : هسته نوع زرهی

البته ترانسفورماتور با هسته های حلزونی یا مارپیچ هم ساخته می شود، ولی قسمت عمده را در صنعت تشکیل نمی دهد.

از نظر فیزیکی در ترانسفورماتور با هسته معمولی سیم پیچی اولیه و ثانویه در دو طرف بازوهای هسته و بصورت مجزا پیچیده می شوند. در حالیکه در نوع زرهی که کاربرد بیشتری هم دارد ، این سیم بندی بر روی قسمت وسط ( اولیه و ثانویه ) روی هم پیچیده می شوند . و از نظر اقتصادی راندمان کار بیشتر دارد و ارزان تر تمام می شود . به شکل (4) توجه کنید.

پراکندگی مغناطیسی :

در بحث قبلی فرض بر این بود که تمام فوران مغناطیسی سیم پیچهای ثانویه را قطع می کردند. اما در عمل غیر ممکن است که این شرط قابل تشخیص باشد. بهر حال معلوم شده است که تمام فوران ناشی از سیم پیچی اولیه سیم پیچهای ثانویه را قطع نمی کند بلکه قسمتی از آن یعنی مدار مغناطیسی را در هوا کامل کرده و از هسته نمی گذرد. این فوران پراکندگی موقعی که نیروی محرکه القائی بعلت تحریک آمپر دور اولیه بین نقاط b , a حادث می شود ، تولید می گردد و در امتداد راههای باریکه پراکندگی عمل می کند . بنابراین این فوران بعنوان پراکندگی اولیه معروف است و متناسب با آمپر دور اولیه است.

زیرا که دورهای ثانویه در اتصال مدار مغناطیسی تاثیر ندارد. فلوی با I1 هم فاز است و نیروی محرکه القایی را در اولیه ( نه در ثانویه ) ایجاد می کند . بهمین ترتیب عمل آمپر دور ثانویه( نیروی محرکه القایی ) در امتداد نقاط d, c فوران پراکندگی را ایجاد کرده و دور سیم پیچی های ثانویه ( نه دوره های اولیه ) با آن رابطه ای مستقیم دارد این فلوی با I2 همفاز بوده و نیروی محرکه القایی را در ثانویه تولید می کند ( نه در اولیه ) . در بارهای کم و بی باری آمپر دورهای اولیه و ثانویه کم هستند . و بنابراین فلوی های پراکندگی قابل صرفنظر هستند . اما موقعیکه بار افزایش می یابد از سیم پیچهای اولیه و ثانویه جریانهای زیادی می گذرد و بنابراین نیروی محرکه های آنها در حین عمل روی راههای باریکه بوجود آمده و فوران پراکندگی را افزایش می دهند.

همانطوریکه قبلاً گفته شد فوران پراکندگی متصل به هر سیم پیچ یک نیروی محرکه خود القاء در آن سیم پیچ تولید می کند بنابراین ، این اثر معادل یک مسدودکننده یا کوپل القایی که با هر سیم پیچ سری بوده ولتاژ در هر کدام از کوپل ها سری افت کرده و این مقدار افت ولتاژ معادل تولید شده بوسیلة فوران پراکندگی است.

بعبارت دیگر یک ترانسفورماتور با پراکندگی مغناطیسی معادل یک ترانسفورماتور ایده آل و یک کوپل القایی که با مدارهای اولیه و ثانویه در ارتباط است می باشد ، آنچنانکه نیروی محرکه القائی داخلی در هر کدام از کوپل های القایی معادل فوران پراکندگی است .




خرید فایل


ادامه مطلب ...